|
Records |
Links |
|
Author |
Bellocchi, G., B.; Brilli, L.; Ferrise, R.; Dibari, C.; Bindi, M. |
|
|
Title |
Model comparison and improvement: Links established with other consortia |
Type |
Report |
|
Year |
2017 |
Publication |
FACCE MACSUR Reports |
Abbreviated Journal |
|
|
|
Volume |
10 |
Issue |
|
Pages |
XC1.3-D |
|
|
Keywords |
|
|
|
Abstract |
XC1 has established links to other research activities and consortia on model comparison and improvement. They include the global initiatives AgMIP (http://www.agmip.org ) and GRA (http://www.globalresearchalliance.org), and the EU-FP7 project MODEXTREME (http://modextreme.org ). These links have allowed sharing and communication of recent results and methods, and have created opportunities for future research calls. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
Report |
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
MA @ admin @ |
Serial |
4941 |
|
Permanent link to this record |
|
|
|
|
Author |
Brilli, L.; Ferrise, R.; Dibari, C.; Bindi, M.; Bellocchi, G. |
|
|
Title |
Needs on model improvement |
Type |
Report |
|
Year |
2017 |
Publication |
FACCE MACSUR Reports |
Abbreviated Journal |
|
|
|
Volume |
10 |
Issue |
|
Pages |
XC1.1-D |
|
|
Keywords |
|
|
|
Abstract |
The need to answer new scientific questions can be satisfied by an increased knowledge of physiological mechanisms which, in turn, can be used for improving the accuracy of simulations of process-based models. In this context, this report highlights areas that need to be further improved to facilitate the operational use of simulation models. It describes missing approaches within simulation models which, if implemented, would likely improve the representation of the dynamics of processes underlying different compartments of crop and grassland systems (e.g. plant growth and development, yield production, GHG emissions), as well as of the livestock production systems. The following rationale has been used in the organization of this report. We first briefly introduced the need to improve the reliability of existing models. Then, we indicated climate change and its influence on the global carbon balance as the main issue to be addressed by existing crop and grassland (section 2), and livestock (section 3) models. In section 2, among the major aspects that if implemented may reduce the uncertainty inherent to model outputs, we suggested: i) quantifying the effects of climate extremes on biological systems; ii) modelling of multi-species sward; iii) coupling of pest and disease sub-models; iv) improvement of the carry-over effect. In section 3, as the most important aspects to consider in livestock models we indicated: i) impacts and dynamics of pathogens and disease; ii) heat stress effects on livestock; iii) effects on grassland productivity and nutritional values; iv) improvement of GHG emissions dynamics. In Section 4, remarks are made concerning the need to implement the suggested aspects into the existing models. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
MA @ admin @ |
Serial |
4938 |
|
Permanent link to this record |
|
|
|
|
Author |
Dibari, C.; Argenti, G.; Catolfi, F.; Moriondo, M.; Staglianò, N.; Bindi, M. |
|
|
Title |
Climate change impacts on natural pasturelands of Italian Apennines |
Type |
Conference Article |
|
Year |
2014 |
Publication |
|
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
As well as the entire Mediterranean area, the Italian Apennines have been affected by increasing temperatures, rainfall extreme events and decreases in annual precipitation due to climate change. Moreover, permanent grasslands, species-diverse ecosystems characterizing the marginal areas of the Apennines landscape, are acknowledged as very sensitive and vulnerable to climate variation. Building on these premises, statistical classification models coupled with data integration by GIS techniques, were used to territorially assess future climate change impacts on pastoral communities on the Italian Apennines chain. Specifically, a machine learning approach (Random Forest – RF), firstly calibrated for the present period and then applied to future conditions, as projected by HadCM3 General Circulation Model (GCM), was used to simulate potential expansion/reduction and/or altitudinal shifts of the Apennine pasturelands in two time slices, centred on 2050 and 2080, under A2 and B2 SRES scenarios. RF classification model proved to be robust and very efficient to predict lands suited to pastures with regards to present period (classification error: 12%). Furthermore, according to RF simulations, relevant reductions (46 and 34%) of areas potentially suitable for pastoral resource are expected under A2 at the middle and end of the century, respectively, as depicted by the GCM and SRES scenarios. Moreover, progressive upwards shifts are predicted by the model under both SRES scenarios. These reductions will likely interest the central area of the chain threatening the typical and unique herbaceous biodiversity characterizing the Apennine pasturelands. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
FACCE MACSUR Mid-term Scientific Conference |
|
|
Series Volume |
3(S) Sassari, Italy |
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy |
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
MA @ admin @ |
Serial |
5062 |
|
Permanent link to this record |
|
|
|
|
Author |
Kahiluoto, H.; Kaseva, J.; Balek, J.; Olesen, J.E.; Ruiz-Ramos, M.; Gobin, A.; Kersebaum, K.C.; Takac, J.; Ruget, F.; Ferrise, R.; Bezak, P.; Capellades, G.; Dibari, C.; Makinen, H.; Nendel, C.; Ventrella, D.; Rodriguez, A.; Bindi, M.; Trnka, M. |
|
|
Title |
Decline in climate resilience of European wheat |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Proceedings of the National Academy of Sciences of the United States of America |
Abbreviated Journal |
Proc. Natl. Acad. Sci. U. S. A. |
|
|
Volume |
116 |
Issue |
1 |
Pages |
123-128 |
|
|
Keywords |
wheat; cultivar; Europe; climate resilience; response diversity; Diversity; Weather; Growth; Shifts; Crops; Yield; Variability |
|
|
Abstract |
Food security relies on the resilience of staple food crops to climatic variability and extremes, but the climate resilience of European wheat is unknown. A diversity of responses to disturbance is considered a key determinant of resilience. The capacity of a sole crop genotype to perform well under climatic variability is limited; therefore, a set of cultivars with diverse responses to weather conditions critical to crop yield is required. Here, we show a decline in the response diversity of wheat in farmers’ fields in most European countries after 2002-2009 based on 101,000 cultivar yield observations. Similar responses to weather were identified in cultivar trials among central European countries and southern European countries. A response diversity hotspot appeared in the trials in Slovakia, while response diversity “deserts” were identified in Czechia and Germany and for durum wheat in southern Europe. Positive responses to abundant precipitation were lacking. This assessment suggests that current breeding programs and cultivar selection practices do not sufficiently prepare for climatic uncertainty and variability. Consequently, the demand for climate resilience of staple food crops such as wheat must be better articulated. Assessments and communication of response diversity enable collective learning across supply chains. Increased awareness could foster governance of resilience through research and breeding programs, incentives, and regulation. |
|
|
Address |
2019-01-17 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0027-8424 |
ISBN |
|
Medium |
Article |
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
CropM, ft_macsur |
Approved |
no |
|
|
Call Number |
MA @ admin @ |
Serial |
5226 |
|
Permanent link to this record |
|
|
|
|
Author |
Moriondo, M.; Ferrise, R.; Trombi, G.; Brilli, L.; Dibari, C.; Bindi, M. |
|
|
Title |
Modelling olive trees and grapevines in a changing climate |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Environmental Modelling & Software |
Abbreviated Journal |
Env. Model. Softw. |
|
|
Volume |
72 |
Issue |
|
Pages |
387-401 |
|
|
Keywords |
tree crops; climate change; simulation models; crop yield; vitis-vinifera l.; air co2 enrichment; soil-water content; elevated co2; mediterranean basin; cropping systems; growth; yield; carbon; simulation |
|
|
Abstract |
The models developed for simulating olive tree and grapevine yields were reviewed by focussing on the major limitations of these models for their application in a changing climate. Empirical models, which exploit the statistical relationship between climate and yield, and process based models, where crop behaviour is defined by a range of relationships describing the main plant processes, were considered. The results highlighted that the application of empirical models to future climatic conditions (i.e. future climate scenarios) is unreliable since important statistical approaches and predictors are still lacking. While process-based models have the potential for application in climate-change impact assessments, our analysis demonstrated how the simulation of many processes affected by warmer and CO2-enriched conditions may give rise to important biases. Conversely, some crop model improvements could be applied at this stage since specific sub-models accounting for the effect of elevated temperatures and CO2 concentration were already developed. (C) 2014 Elsevier Ltd. All rights reserved. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1364-8152 |
ISBN |
|
Medium |
Article |
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
CropM, ftnotmacsur |
Approved |
no |
|
|
Call Number |
MA @ admin @ |
Serial |
4691 |
|
Permanent link to this record |