toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Christen, B.; Kjeldsen, C.; Dalgaard, T.; Martin-Ortega, J. url  doi
openurl 
  Title Can fuzzy cognitive mapping help in agricultural policy design and communication? Type Journal Article
  Year 2015 Publication Land Use Policy Abbreviated Journal Land Use Policy  
  Volume 45 Issue Pages 64-75  
  Keywords Agricultural policy; Agro-environmental measures; Fuzzy cognitive mapping (FCM); General Binding Rules; Stakeholder communication; Scottish agriculture  
  Abstract Highlights •Fuzzy cognitive mapping (FCM)can help to improve agricultural policy design. •We analyse the views on regulation between farmers and non-farmers. •We demonstrate the utility of FCM in disentangling reasons for non-compliance. •Non-compliance is a result of dis-alignment of views rather than unwillingness. •FCM offers a critical, reflexive approach to how a regulatory process is conceived. Agricultural environmental regulation often fails to deliver the desired effects because of farmers adopting the related measures incorrectly or not at all. This is due to several barriers to the uptake of the prescribed environmentally beneficial farm management practices, most of which have been well established by social science research. Yet it is unclear why these barriers remain so difficult to overcome despite numerous and persistent attempts at the design, communication and enforcement of related agricultural policies. This paper examines the potential of fuzzy cognitive mapping (FCM) as a tool to disentangle the underlying reasons of this persistent problem. We present the FCM methodology as adapted to the application in a Scottish case study on how environmental regulation affects farmers and farming practice and what factors are important for compliance or non-compliance with this regulation. The study compares the views of two different stakeholder groups on this matter using FCM network visualizations that were validated by interviews and a workshop session. There was a farmers group representing a typical mix of Scottish farming systems and a non-farmers group, the latter comprising professionals from the fields of design, implementation, administration, consulting on and enforcement of agricultural policies. Between the two groups, the FCM process reveals a very different perception of importance and interaction of factors and strongly suggests that the problem lies in an institutional failure rather than in a simple unwillingness of farmers to obey the rules. FCM allows for a structured process of identifying areas of conflicting perceptions, but also areas where strongly differing groups of stakeholders might be able to gain common ground. In this way, FCM can help to identify anchoring points for targeted policy development and has the potential of becoming a useful tool in agricultural policy design and communication. Our results show the utility of FCM by pointing out how Scottish environmental regulation could be altered to increase compliance with the rules and where the reasons for the identified institutional failure might be sought.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4620  
Permanent link to this record
 

 
Author Dalgaard, T. url  openurl
  Title Models for regional scale farming system evaluation of climate change mitigation options and environmental impact assessment Type
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-15  
  Keywords  
  Abstract The aim of the present paper is to exemplify and discuss the importance of farm scale modeling in relation to The EU Joint Programming Initiative (JPI-FACCE) knowledge hub on Agriculture, Food Security and Climate Change project.In particular, livestock production systems include complex interactions, with non-linear relationships between input factors, production, emissions, local climate as well as natural resources (e.g. soil types, rotational land versus permanent grasslands etc.). Moreover, management options pursued by the different types of farmers and other relevant decision makers are important to integrate. Consequently, results of regional scale impact assessments depend on the farming systems model approach, the approach to upscale results, and the inclusion of the relevant stakeholders and decision makers at the scales considered.Different farming systems models are reviewed, including the existing dynamic and static biophysical models. Finally, procedures for upscaling and validity testing of synthesized model results at regional scales are presented. Based on a discussion of these procedures, recommendations for hot-spot analyses in farming systems with regard to integrated climate change adaptation and mitigation for a sustainable food production are synthesized, and the potentials for integration of recommended policies and farm management options into overarching models in order to assess their impact on the regional to global scales are discussed. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2130  
Permanent link to this record
 

 
Author Kipling, R.P.; Bannink, A.; Bellocchi, G.; Dalgaard, T.; Fox, N.J.; Hutchings, N.J.; Kjeldsen, C.; Lacetera, N.; Sinabell, F.; Topp, C.F.E.; van Oijen, M.; Virkajärvi, P.; Scollan, N.D. url  openurl
  Title Modelling European ruminant production systems: Facing the challenges of climate change Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 10 Issue Pages L1.1-D1  
  Keywords  
  Abstract Ruminant production systems are important producers of food, support rural communities and culture, and help to maintain a range of ecosystem services including the sequestering of carbon in grassland soils. However, these systems also contribute significantly to climate change through greenhouse gas (GHG) emissions, while intensi- fication of production has driven biodiversity and nutrient loss, and soil degradation. Modeling can offer insights into the complexity underlying the relationships between climate change, management and policy choices, food production, and the maintenance of ecosystem services. This paper 1) provides an overview of how ruminant systems modeling supports the efforts of stakeholders and policymakers to predict, mitigate and adapt to climate change and 2) provides ideas for enhancing modeling to fulfil this role. Many grassland models can predict plant growth, yield and GHG emissions from mono-specific swards, but modeling multi-species swards, grassland quality and the impact of management changes requires further development. Current livestock models provide a good basis for predicting animal production; linking these with models of animal health and disease is a prior- ity. Farm-scale modeling provides tools for policymakers to predict the emissions of GHG and other pollutants from livestock farms, and to support the management decisions of farmers from environmental and economic standpoints. Other models focus on how policy and associated management changes affect a range of economic and environmental variables at regional, national and European scales. Models at larger scales generally utilise more empirical approaches than those applied at animal, field and farm-scales and include assumptions which may not be valid under climate change conditions. It is therefore important to continue to develop more realistic representations of processes in regional and global models, using the understanding gained from finer-scale modeling. An iterative process of model development, in which lessons learnt from mechanistic models are ap- plied to develop ‘smart’ empirical modeling, may overcome the trade-off between complexity and usability. De- veloping the modeling capacity to tackle the complex challenges related to climate change, is reliant on closer links between modelers and experimental researchers, and also requires knowledge-sharing and increasing technical compatibility across modeling disciplines. Stakeholder engagement throughout the process of model development and application is vital for the creation of relevant models, and important in reducing problems re- lated to the interpretation of modeling outcomes. Enabling modeling to meet the demands of policymakers and other stakeholders under climate change will require collaboration within adequately-resourced, long-term inter-disciplinary research networks  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Abstract  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 4947  
Permanent link to this record
 

 
Author Kjeldsen, C.; Sørensen, A.-M.L.; Dalgaard, T.; Graversgard, M. url  openurl
  Title Report on cross-cutting approaches for the assessment of climate change adaption on selected EU sites or hotspots and potentials for adaption and mitigation in the dairy sector Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-L4.3  
  Keywords  
  Abstract Adaption to climate change in the context of agriculture involves collaborative planning and development of practices which is deemed more sustainable than preceeding practices. It is however not given that sustainable development will be the outcome of such efforts. In some cases, even motivated participants experience that despite good intentions, high levels of knowledge, feasible models, appropriate technologies and many other factors present, they still might not succeed bringing about the desired change. The reasons for this can not easily be reduced to just one factor, but is very likely to be the outcome of highly complex interactions between social, technological, institutional, or even personal factors. The report documents attempts to understand the complexities of climate change adaption in a Danish water catchment, Lundgaards Bæk, which is dominated by dairy farming. As part of the EU projects AQUARIUS and MACSUR, a local action group was formed which was composed of local farmers, local agricultural advisors, advisors from the national agricultural advisory service, environmental planners from the local municipality, and environmental planners from the national environmental agency in Denmark. The action group was supposed to develop specific measures, which were supposed to lead to an overall reduction in nitrogen loading of the neighboring fjord, Mariager Fjord. The report addresses three related research themes: (1) how do the stakeholders in question interact during the process of climate change adaption, (2) when do the stakeholders encounter opportunities and barriers during the process, and finally (3) does the adaption process in question lead to the desired outcomes? The empirical background of the report is a detailed process study of dynamics within a group of stakeholders, including farmers and extension officers, who were supposed to develop sustainable management practices in order to reduce nitrogen leaching to the Mariager Fjord. The study is based on the assumption that in order for research and policy to contribute to sustainable practices, deeper understanding of complex dynamics within stakeholder partnerships is needed. Based on a theoretical framework derived from social learning, adaptive co-management and Andrew Pickering’s notion of ‘the mangle’, different in-depth explanations to why sustainable development did not occur, are offered. One explanation concerns social-psychological dynamics of knowledge. Another explanation concerns the mechanisms by which social and material forces affect outcomes of the adaption process. The report concludes by exploring the study’s relevance in relation to policy, research and practice, followed by suggestions for further in-depth case studies and experimentation in practice. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2111  
Permanent link to this record
 

 
Author Dalgaard, T.; Kjeldsen, C.; Graversgard, M. url  openurl
  Title Review of regional scale models in the EU and methods commonly used when modelling outcomes of the implementation of the climate change mitigation policies Type Report
  Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-L4.1  
  Keywords  
  Abstract Management of Nitrogen (N) losses and the related greenhouse gas emissions is one of the most important environmental issues related to agriculture. This report shows examples of an integrated model tool, developed to quantify the N-dynamics at the complex interface between agriculture and the environment, and quantify effects of different management practices. Based on results from the EU funded research projects NitroEurope (www.NitroEurope.eu) and MEAscope (www.MEA-scope.org), examples from the quantification of farm N-losses in European agricultural landscapes are demonstrated. Applications of the dynamic whole farm model FASSET (www.FASSET.dk), and the Farm-N tool (www.farm-N.dk/FarmNTool) to calculate farm N balances, and distribute the surplus N between different types of N-losses (volatilisation, denitrification, leaching), and the related greenhouse gas emissions, show significant variation between landscapes and management practices. Moreover, significant effects of the nonlinearities, appearing when integrating over time, and scaling up from farm to landscape, are demonstrated. Finally, perspectives for stakeholder involvement is included and general recommendations for landscape level management of farm related nitrogen and greenhouse gas fluxes are made, and discussed in relation to ongoing research in the European research projects. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2110  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: