|   | 
Details
   web
Records
Author (up) Daccache, A.
Title Assessing water and energy footprint of irrigated agriculture in the Mediterranean Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Agriculture in the Mediterranean, one of the water scarcest regions in the world is by far the largest water consuming sector. Dwindling water supply, increase in drought frequency and uncertainties associated with climate change have raised the alerts on the region’s food security and environmental sustainability. In this study, a large geo-database of global climate, soil and crop were combined with national irrigation statistics to run a water balance model to estimate the theoretical irrigation volumetric needs of the Mediterranean main strategic crops and their relative CO2 emissions. When associated with the reported crop yield and water resources availability, the spatial variability of water (m3/kg) and energy (CO2/kg) productivity across the Mediterranean region are obtained and vulnerable areas are identified. The estimated total water needs for the Mediterranean irrigated agriculture under current climate, land cover and irrigation methods was estimated to be around 46km3/year releasing more than 3Mt of CO2 in the atmosphere only from water abstraction and farm application. Currently, 59% of total irrigation water needs are located in catchments that are classified as under high and extremely high water risk. With climate change, water resources are expected to become scarcer and agriculture more dependent on irrigation to satisfy the continuous increase in food demand. Adaptation and mitigation options to tackle water scarcity and improve productivity under current and future climate will be discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5056
Permanent link to this record
 

 
Author (up) Daccache, A.; Ciurana, J.S.; Diaz, J.A.R.; Knox, J.W.
Title Water and energy footprint of irrigated agriculture in the Mediterranean region Type Journal Article
Year 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 9 Issue 12 Pages 124014
Keywords food security; CO2 emissions; nexus; water productivity; water resources; climate-change; southern spain; management; impacts; deficit; grids
Abstract Irrigated agriculture constitutes the largest consumer of freshwater in the Mediterranean region and provides a major source of income and employment for rural livelihoods. However, increasing droughts and water scarcity have highlighted concerns regarding the environmental sustainability of agriculture in the region. An integrated assessment combining a gridded water balance model with a geodatabase and GIS has been developed and used to assess the water demand and energy footprint of irrigated production in the region. Modelled outputs were linked with crop yield and water resources data to estimate water (m(3) kg(-1)) and energy (CO2 kg(-1)) productivity and identify vulnerable areas or `hotspots’. For a selected key crops in the region, irrigation accounts for 61 km(3) yr(-1) of water abstraction and 1.78 Gt CO2 emissions yr-1, with most emissions from sunflower (73 kg CO2/t) and cotton (60 kg CO2/t) production. Wheat is a major strategic crop in the region and was estimated to have a water productivity of 1000 tMm(-3) and emissions of 31 kg CO2/t. Irrigation modernization would save around 8 km(3) of water but would correspondingly increase CO2 emissions by around +135\%. Shifting from rain-fed to irrigated production would increase irrigation demand to 166 km(3) yr(-1) (+137\%) whilst CO2 emissions would rise by +270\%. The study has major policy implications for understanding the water-energy-food nexus in the region and the trade-offs between strategies to save water, reduce CO2 emissions and/or intensify food production.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4747
Permanent link to this record
 

 
Author (up) Knox, J.; Daccache, A.; Hess, T.; Haro, D.
Title Meta-analysis of climate impacts and uncertainty on crop yields in Europe Type Journal Article
Year 2016 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 11 Issue Pages 113004
Keywords
Abstract Future changes in temperature, rainfall and soil moisture could threaten agricultural land use and crop productivity in Europe, with major consequences for food security. We assessed the projected impacts of climate change on the yield of seven major crop types (viz wheat, barley, maize, potato, sugar beet, rice and rye) grown in Europe using a systematic review (SR) and meta-analysis of data reported in 41 original publications from an initial screening of 1748 studies. Our approach adopted an established SR procedure developed by the Centre for Evidence Based Conservation constrained by inclusion criteria and defined methods for literature searches, data extraction, meta-analysis and synthesis. Whilst similar studies exist to assess climate impacts on crop yield in Africa and South Asia, surprisingly, no comparable synthesis has been undertaken for Europe. Based on the reported results (n = 729) we show that the projected change in average yield in Europe for the seven crops by the 2050s is +8%. For wheat and sugar beet, average yield changes of +14% and +15% are projected, respectively. There were strong regional differences with crop impacts in northern Europe being higher (+14%) and more variable compared to central (+6%) and southern (+5) Europe. Maize is projected to suffer the largest negative mean change in southern Europe (−11%). Evidence of climate impacts on yield was extensive for wheat, maize, sugar beet and potato, but very limited for barley, rice and rye. The implications for supporting climate adaptation policy and informing climate impacts crop science research in Europe are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5011
Permanent link to this record