toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yin, X.; Olesen, J.E.; Wang, M.; Öztürk, I.; Chen, F. openurl 
  Title Observed and anticipated impacts and adaptation of crop production systems to climate change in the northeast farming region of China Type Manuscript
  Year Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords CropM;  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2911  
Permanent link to this record
 

 
Author Yin, X.; Olesen, J.E.; Li, W.; Wang, M.; Öztürk, I.; Chen, F. openurl 
  Title Climate effects on crop yield in the northeast farming region of China during 1961 to 2010 Type Manuscript
  Year Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords CropM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2910  
Permanent link to this record
 

 
Author Yin, X.; Kersebaum, K.-C.; Beaudoin, N.; Constantin, J.; Chen, F.; Louarn, G.; Manevski, K.; Hoffmann, M.; Kollas, C.; Armas-Herrera, C.M.; Baby, S.; Bindi, M.; Dibari, C.; Ferchaud, F.; Ferrise, R.; de Cortazar-Atauri, I.G.; Launay, M.; Mary, B.; Moriondo, M.; Öztürk, I.; Ruget, F.; Sharif, B.; Wachter-Ripoche, D.; Olesen, J.E. url  doi
openurl 
  Title Uncertainties in simulating N uptake, net N mineralization, soil mineral N and N leaching in European crop rotations using process-based models Type Journal Article
  Year 2020 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume Issue Pages 107863  
  Keywords multi-model ensemble; crop rotations; catch crops; N cycling; N export  
  Abstract Modelling N transformations within cropping systems is crucial for N management optimization in order to increase N use efficiency and reduce N losses. Such modelling remains challenging because of the complexity of N cycling in soil–plant systems. In the current study, the uncertainties of six widely used process-based models (PBMs), including APSIM, CROPSYST, DAISY, FASSET, HERMES and STICS, were tested in simulating different N managements (catch crops (CC) and different N fertilizer rates) in 12-year rotations in Western Europe. Winter wheat, sugar beet and pea were the main crops, and radish was the main CC in the tested systems. Our results showed that PBMs simulated yield, aboveground biomass, N export and N uptake well with low RMSE values, except for sugar beet, which was generally less well parameterized. Moreover, PBMs provided more accurate crop simulations (i.e. N export and N uptake) compared to simulations of soil (N mineralization and soil mineral N (SMN)) and environmental variables (N leaching). The use of multi-model ensemble mean or median of four PBMs significantly reduced the mean absolute percentage error (MAPE) between simulations and observations to less than 15% for yield, aboveground biomass, N export and N uptake. Multi-model ensemble also significantly reduced the MAPE for net N mineralization and annual N leaching to around 15%, while it was larger than 20% for SMN. Generally, PBMs well simulated the CC effects on N fluxes, i.e. increasing N mineralization and reducing N leaching in both short-term and long-term, and all PBMs correctly predicted the effects of the reduced N rate on all measured variables in the study. The uncertainties of multi-model ensemble for N mineralization, SMN and N leaching were larger, mainly because these variables are influenced by plant-soil interactions and subject to cumulative long-term effects in crop rotations, which makes them more difficult to simulate. Large differences existed between individual PBMs due to the differences in formalisms for describing N processes in soil–plant systems, the skills of modelers and the model calibration level. In addition, the model performance also depended on the simulated variables, for instance, HERMES and FASSET performed better for yield and crop biomass, APSIM, DAISY and STICS performed better for N export and N uptake, STICS provided best simulation for SMN and N leaching among the six individual PBMs in the study, but all PBMs met difficulties to well predict either average or variance of soil N mineralization. Our results showed that better calibration for soil N variables is needed to improve model predictions of N cycling in order to optimize N management in crop rotations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium article  
  Area CropM Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5235  
Permanent link to this record
 

 
Author Yin, X.; Olesen, J.E.; Wang, M.; Kersebaum, K.-C.; Chen, H.; Baby, S.; Öztürk, I.; Chen, F. url  doi
openurl 
  Title Adapting maize production to drought in the Northeast Farming Region of China Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 77 Issue Pages 47-58  
  Keywords Drought; Maize production; Adaptation strategies; Household characteristics; Policy support; The Northeast Farming Region of China; climate change; Jilin province; water-stress; sowing date; yield; risk; tolerance; impacts; corn; agriculture  
  Abstract Maize (Zea mays L.) is the most prominent crop in the Northeast Farming Region of China (NFR), and drought has been the largest limitation for maize production in this area during recent decades. The question of how to adapt maize production to drought has received great attention from policy makers, researchers and farmers. In order to evaluate the effects of adaptation strategies against drought and examine the influences of policy supports and farmer households’ characteristics on adopting decisions, a large scale household survey was conducted in five representative maize production counties across NFR. Our survey results indicated that using variety diversification, drought resistant varieties and dibbling irrigation are the three major adaptation strategies against drought in spring, and farmers also adopted changes in sowing time, conservation tillage and mulching to cope with drought in spring. About 20% and 18% of households enhanced irrigation against drought in summer and autumn, respectively. Deep loosening tillage and organic fertilizer are also options for farmers to resist drought in summer. Maize yield was highly dependent on soil qualities, with yields on land of high soil quality approximately 1050 kg/ha and 2400 kg/ha higher than for normal and poor soil conditions, respectively. Using variety diversification and drought resistant varieties can respectively increase maize yield by approximately 150 and 220 kg/ha under drought. Conservation tillage increased maize yield by 438–459 kg/ha in drought years. Irrigation improved maize yield by 419–435 kg/ha and 444–463 kg/ha against drought in summer and autumn, respectively. Offering information service, financial and technical support can greatly increase the use of adaptation strategies for farmers to cope with drought. However, only 46% of households received information service, 43% of households received financial support, and 26% of households received technical support against drought from the local government. The maize acreage and the irrigation access are the major factors that influenced farmers’ decisions to apply adaptation strategies to cope with drought in each season, but only 25% of households have access to irrigation. This indicates the need for enhanced public support for farmers to better cope with drought in maize production, particularly through improving access to irrigation.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4825  
Permanent link to this record
 

 
Author Yin, X.G.; Olesen, J.E.; Wang, M.; Öztürk, I.; Chen, F. url  doi
openurl 
  Title Climate effects on crop yields in the Northeast Farming Region of China during 1961–2010 Type Journal Article
  Year 2016 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.  
  Volume 154 Issue 07 Pages 1190-1208  
  Keywords  
  Abstract Crop production in the Northeast Farming Region of China (NFR) is affected considerably by variation in climatic conditions. Data on crop yield and weather conditions from a number of agro-meteorological stations in NFR were used in a mixed linear model to evaluate the impacts of climatic variables on the yield of maize (Zea mays L.), rice (Oryza sativa L.), soybean (Glycine max L. Merr.) and spring wheat (Triticum aestivum L.) in different crop growth phases. The crop growing season was divided into three growth phases based on the average crop phenological dates from records covering 1981 and 2010 at each station, comprising pre-flowering (from sowing to just prior to flowering), flowering (20 days around flowering) and post-flowering (10 days after flowering to maturity). The climatic variables were mean minimum temperature, thermal time (which is used to indicate changes in the length of growth cycles), average daily solar radiation, accumulated precipitation, aridity index (which is used to assess drought stress) and heat degree-days index (HDD) (which is used to indicate heat stress) were calculated for each growth phase and year. Over the 1961–2010 period, the minimum temperature increased significantly in each crop growth phase, the thermal time increased significantly in the pre-flowering phase of each crop and in the post-flowering phases of maize, rice and soybean, and HDD increased significantly in the pre-flowering phase of soybean and wheat. Average solar radiation decreased significantly in the pre-flowering phase of all four crops and in the flowering phase of soybean and wheat. Precipitation increased during the pre-flowering phase leading to less aridity, whereas reduced precipitation in the flowering and post-flowering phases enhanced aridity. Statistical analyses indicated that higher minimum temperature was beneficial for maize, rice and soybean yields, whereas increased temperature reduced wheat yield. Higher solar radiation in the pre-flowering phase was beneficial for maize yield, in the post-flowering phase for wheat yield, whereas higher solar radiation in the flowering phase reduced rice yield. Increased aridity in the pre-flowering and flowering phases severely reduced maize yield, higher aridity in the flowering and post-flowering phases reduced rice yield, and aridity in all growth phases reduced soybean and wheat yields. Higher HDD in all growth phases reduced maize and soybean yield and HDD in the pre-flowering phase reduced rice yield. Such effects suggest that projected future climate change may have marked effects on crop yield through effects of several climatic variables, calling for adaptation measures such as breeding and changes in crop, soil and agricultural water management.  
  Address 2016-09-30  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4782  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: