|   | 
Details
   web
Records
Author Rötter, R.P.; Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Basso, B.; Ruane, A.; Boote, K.J.; Thorburn, P.; Brisson, N.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Pertuzzi; Biernath, C.; Challinor, A.J.; Doltra, J.; Gayler, S.; Goldberg, R.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Kersebaum, K.-C.; Müller, C.; Kumar, S.N.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J.
Title Quantifying Uncertainties in Modeling Crop Water Use under Climate Change Type Conference Article
Year 2013 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (up) Medium
Area Expedition Conference Impacts World 2013, International Conference on Climate Change Effects, Potsdam, Germany, 2013-05-27 to 2013-05-30
Notes Approved no
Call Number MA @ admin @ Serial 2767
Permanent link to this record
 

 
Author Porter, J.R.; Xie, L.; Challinor, A.J.; Cochrane, K.; Howden, S.M.; Iqbal, M.M.; Lobell, D.B.; Travasso, M.I.
Title Food security and food production systems Type Book Chapter
Year 2014 Publication Abbreviated Journal
Volume Issue Pages 485-533
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher Cambridge University Press Place of Publication Cambridge, United Kingdom and New York, NY, USA Editor Field, C.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandrea, M.D.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; Girma, B.; Kissel, E.S.; Levy, A.N.; MacCracken, S.; Mastrandrea, P.R.; White, L.L.
Language Summary Language Original Title
Series Editor Series Title Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change (IPCC) Abbreviated Series Title
Series Volume Climate Change 2014: Impacts, Adaptation, and Vuln Series Issue Edition
ISSN ISBN (up) Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2734
Permanent link to this record
 

 
Author Cammarano, D.; Rötter, R.P.; Asseng, S.; Ewert, F.; Wallach, D.; Martre, P.; Hatfield, J.L.; Jones, J.W.; Rosenzweig, C.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Kersebaum, K.C.; Aggarwal, P.K.; Angulo, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Brisson, N.; Challinor, A.J.; Doltra, J.; Gayler, S.; Goldberg, R.; Heng, L.; Hooker, J.E.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Müller, C.; Kumar, S.N.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Priesack, E.; Ripoche, D.; Steduto, P.; Stöckle, C.O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; White, J.W.; Wolf, J.
Title Uncertainty of wheat water use: Simulated patterns and sensitivity to temperature and CO2 Type Journal Article
Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 198 Issue Pages 80-92
Keywords Multi-model simulation; Transpiration efficiency; Water use; Uncertainty; Sensitivity
Abstract Projected global warming and population growth will reduce future water availability for agriculture. Thus, it is essential to increase the efficiency in using water to ensure crop productivity. Quantifying crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal. Here, sixteen wheat simulation models were used to quantify sources of model uncertainty and to estimate the relative changes and variability between models for simulated WU, water use efficiency (WUE, WU per unit of grain dry mass produced), transpiration efficiency (Teff, transpiration per kg of unit of grain yield dry mass produced), grain yield, crop transpiration and soil evaporation at increased temperatures and elevated atmospheric carbon dioxide concentrations ([CO2]). The greatest uncertainty in simulating water use, potential evapotranspiration, crop transpiration and soil evaporation was due to differences in how crop transpiration was modelled and accounted for 50% of the total variability among models. The simulation results for the sensitivity to temperature indicated that crop WU will decline with increasing temperature due to reduced growing seasons. The uncertainties in simulated crop WU, and in particularly due to uncertainties in simulating crop transpiration, were greater under conditions of increased temperatures and with high temperatures in combination with elevated atmospheric [CO2] concentrations. Hence the simulation of crop WU, and in particularly crop transpiration under higher temperature, needs to be improved and evaluated with field measurements before models can be used to simulate climate change impacts on future crop water demand.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN (up) Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4786
Permanent link to this record
 

 
Author Wallach, D.; Thorburn, P.; Asseng, S.; Challinor, A.J.; Ewert, F.; Jones, J.W.; Rötter, R.; Ruane, A.
Title Estimating model prediction error: Should you treat predictions as fixed or random Type Journal Article
Year 2016 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 84 Issue Pages 529-539
Keywords Crop model; Uncertainty; Prediction error; Parameter uncertainty; Input uncertainty; Model structure uncertainty
Abstract Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEPfixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEPuncertain(X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEPuncertain(X) can be estimated using a random effects ANOVA. It is argued that MSEPuncertain(X) is the more informative uncertainty criterion, because it is specific to each prediction situation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN (up) Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4773
Permanent link to this record
 

 
Author Makowski, D.; Asseng, S.; Ewert, F.; Bassu, S.; Durand, J.L.; Li, T.; Martre, P.; Adam, M.; Aggarwal, P.K.; Angulo, C.; Baron, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Boogaard, H.; Boote, K.J.; Bouman, B.; Bregaglio, S.; Brisson, N.; Buis, S.; Cammarano, D.; Challinor, A.J.; Confalonieri, R.; Conijn, J.G.; Corbeels, M.; Deryng, D.; De Sanctis, G.; Doltra, J.; Fumoto, T.; Gaydon, D.; Gayler, S.; Goldberg, R.; Grant, R.F.; Grassini, P.; Hatfield, J.L.; Hasegawa, T.; Heng, L.; Hoek, S.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Jongschaap, R.E.E.; Jones, J.W.; Kemanian, R.A.; Kersebaum, K.C.; Kim, S.-H.; Lizaso, J.; Marcaida, M.; Müller, C.; Nakagawa, H.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.J.; Olesen, J.E.; Oriol, P.; Osborne, T.M.; Palosuo, T.; Pravia, M.V.; Priesack, E.; Ripoche, D.; Rosenzweig, C.; Ruane, A.C.; Ruget, F.; Sau, F.; Semenov, M.A.; Shcherbak, I.; Singh, B.; Singh, U.; Soo, H.K.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tang, L.; Tao, F.; Teixeira, E.I.; Thorburn, P.; Timlin, D.; Travasso, M.; Rötter, R.P.; Waha, K.; Wallach, D.; White, J.W.; Wilkens, P.; Williams, J.R.; Wolf, J.; Yin, X.; Yoshida, H.; Zhang, Z.; Zhu, Y.
Title A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration Type Journal Article
Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 214-215 Issue Pages 483-493
Keywords climate change; crop model; emulator; meta-model; statistical model; yield; climate-change; wheat yields; metaanalysis; uncertainty; simulation; impacts
Abstract Ensembles of process-based crop models are increasingly used to simulate crop growth for scenarios of temperature and/or precipitation changes corresponding to different projections of atmospheric CO2 concentrations. This approach generates large datasets with thousands of simulated crop yield data. Such datasets potentially provide new information but it is difficult to summarize them in a useful way due to their structural complexities. An associated issue is that it is not straightforward to compare crops and to interpolate the results to alternative climate scenarios not initially included in the simulation protocols. Here we demonstrate that statistical models based on random-coefficient regressions are able to emulate ensembles of process-based crop models. An important advantage of the proposed statistical models is that they can interpolate between temperature levels and between CO2 concentration levels, and can thus be used to calculate temperature and [CO2] thresholds leading to yield loss or yield gain, without rerunning the original complex crop models. Our approach is illustrated with three yield datasets simulated by 19 maize models, 26 wheat models, and 13 rice models. Several statistical models are fitted to these datasets, and are then used to analyze the variability of the yield response to [CO2] and temperature. Based on our results, we show that, for wheat, a [CO2] increase is likely to outweigh the negative effect of a temperature increase of +2 degrees C in the considered sites. Compared to wheat, required levels of [CO2] increase are much higher for maize, and intermediate for rice. For all crops, uncertainties in simulating climate change impacts increase more with temperature than with elevated [CO2].
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN (up) Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4714
Permanent link to this record