|   | 
Details
   web
Records
Author Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; Reynolds, M.P.; Alderman, P.D.; Prasad, P.V.V.; Aggarwal, P.K.; Anothai, J.; Basso, B.; Biernath, C.; Challinor, A.J.; De Sanctis, G.; Doltra, J.; Fereres, E.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L.A.; Izaurralde, R.C.; Jabloun, M.; Jones, C.D.; Kersebaum, K.C.; Koehler, A.-K.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Palosuo, T.; Priesack, E.; Eyshi Rezaei, E.; Ruane, A.C.; Semenov, M.A.; Shcherbak, I.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P.J.; Waha, K.; Wang, E.; Wallach, D.; Wolf, J.; Zhao, Z.; Zhu, Y.
Title Rising temperatures reduce global wheat production Type Journal Article
Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 5 Issue 2 Pages 143-147
Keywords climate-change; spring wheat; dryland wheat; yield; growth; drought; heat; CO2; agriculture; adaptation
Abstract Crop models are essential tools for assessing the threat of climate change to local and global food production1. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature2. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 °C to 32 °C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each °C of further temperature increase and become more variable over space and time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial (down) 4550
Permanent link to this record
 

 
Author Cammarano, D.; Rötter, P.; Ewert, F.; Palosuo, T.; Bindi, M.; Kersebaum, K.C.; Olesen, J.E.; Trnka, M.; van Ittersum, M.K.; Janssen, S.; Rivington, M.; Semenov, M.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Angulo, C.; Gaiser, T.; Nendel, C.; Martre, P.; de Wit, A.
Title Challenges for Agro-Ecosystem Modelling in Climate Change Risk Assessment for major European Crops and Farming systems Type Conference Article
Year 2013 Publication Abbreviated Journal
Volume Issue Pages 555-564
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Impacts World 2013, International Conference on Climate Change Effects, Potsdam, Germany, 2013-05-27 to 2013-05-30
Notes Approved no
Call Number MA @ admin @ Serial (down) 2765
Permanent link to this record
 

 
Author Ewert, F.; van Bussel, L.G.J.; Zhao, G.; Hoffmann, H.; Gaiser, T.; Specka, X.; Nendel, C.; Kersebaum, K.-C.; Sosa, C.; Lewan, E.; Yeluripati, J.; Kuhnert, M.; Tao, F.; Rötter, R.P.; Constantin, J.; Raynal, H.; Wallach, D.; Teixeira, E.; Grosz, B.; Bach, M.; Doro, L.; Roggero, P.P.; Zhao, Z.; Wang, E.; Kiese, R.; Haas, E.; Eckersten, H.; Trombi, G.; Bindi, M.; Klein, C.; Biernath, C.; Heinlein, F.; Priesack, E.; Cammarano, D.; Asseng, S.; Elliott, J.; Glotter, M.; Basso, B.; Baigorria, G.A.; Romero, C.C.; Moriondo, M.
Title Uncertainties in Scaling up Crop Models for Large Area Climate-change Impact Assessments Type Book Chapter
Year 2015 Publication Abbreviated Journal
Volume Issue Pages 261-277
Keywords CropM;
Abstract
Address
Corporate Author Thesis
Publisher Imperial College Press Place of Publication London Editor Rosenzweig, C.; Hillel, D.
Language Summary Language Original Title
Series Editor Series Title Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project (AgMIP) Integrated Crop and Economic Assessments — Joint Publication with American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America (In 2 Parts) Abbreviated Series Title
Series Volume ICP Series on Climate Change Impacts, Adaptation, Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial (down) 2427
Permanent link to this record
 

 
Author Cammarano, D.; Rivington, M.; Matthews, K.; B,; Bellocchi, G.
Title Estimates of crop responses to climate change with quantified ranges of uncertainty Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-C4.1.3
Keywords
Abstract In estimating responses of crops to future climate realisations, it is necessary to understand and differentiate between the sources of uncertainty in climate models and how these lead to errors in estimating the past climate and biases in future projections, and how these affect crop model estimates. This paper investigates the complexities in using climate model projections representing different spatial scales within climate change impacts and adaptation studies. This is illustrated by simulating spring barley with three crop models run using site-specific observed, original (50•50 km) and bias corrected downscaled (site-specific) hindcast (1960-1990) weather data from the HadRM3 Regional Climate Model (RCM). Original and bias corrected downscaled weather data were evaluated against the observed data. The comparisons made between the crop models were in the light of lessons learned from this data evaluation. Though the bias correction downscaling method improved the match between observed and hindcast data, this did not always translate into better matching of crop models estimates. At four sites the original HadRM3 data produced near identical mean simulated yield values as from the observed weather data, despite differences in the weather data, giving a situation of ‘right results for the wrong reasons’. This was likely due to compensating errors in the input weather data and non-linearity in crop models processes, making interpretation of results problematic. Overall, bias correction downscaling improved the quality of simulated outputs. Understanding how biases in climate data manifest themselves in crop models gives greater confidence in the utility of the estimates produced using downscaled future climate projections. The results indicate implications on how future projections of climate change impacts are interpreted. Fundamentally, considerable care is required in determining the impact weather data sources have in climate change impact and adaptation studies, whether from individual models or ensembles. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial (down) 2098
Permanent link to this record