|   | 
Details
   web
Records
Author (up) Brzezinska, M.
Title What is a stronger determinant of soil respiration: soil temperature or moisture Type
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-10
Keywords
Abstract Increased atmospheric concentrations of greenhouse gases have led to global warming and climatic changes. Both experimental and modelling studies are necessary to predict and to quantify gas exchange in agroecosystems. We studied the effect of the important environmental factors (soil moisture and temperature) on CO2 emission from agricultural soil (Orthic Luvisol developed from loess) under field and laboratory conditions. In the field experiment (winter wheat, permanent meadow or black fallow), the in situ CO2 efflux form the soil, soil moisture and temperature were measured from April to December 2013. The CO2 efflux was influenced by plant cover (F=7.96; p<0.001), and was related to both, soil temperature (p<0.001) and slightly less by soil moisture (p<0.01). In the second experiment, soil was collected from a depth of 0-10 cm, air-dried, and passed through an 2  mm sieve. Next, soil samples were rewetted to obtain soil moisture in a range from water saturation (pF 0) to plant wilting point (pF 4.2), and incubated at different temperatures (from 5oC to 30oC). Multifactor analysis of variance has shown that the soil respiration, as measured under controlled conditions, was much more affected by soil temperature (F=237.0; p<0.0001), than by soil moisture (F=4.99; p<0.01). No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2125
Permanent link to this record
 

 
Author (up) Slawinski, C.; Brzezinska, M.; Lipiec, J.
Title MACSUR -Modelling European Agriculture with Climate Change for Food Security Type Conference Article
Year 2012 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference A seminar on presenting the objectives of FACCE-JPI MACSUR project and discussing the participation of the Institute of Agrophysics PAS in this project (cooperation between partners: 139, 158, 162), Institute of Agrophysics Polish Academy of Sciences, Lub
Notes Approved no
Call Number MA @ admin @ Serial 2842
Permanent link to this record
 

 
Author (up) Walkiewicz, A.; Brzezinska, M.
Title Methane oxidation in forest and fertilized soils Type Conference Article
Year 2013 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 12th International Workshop for Young Scientists BioPhys Spring 2013. Lublin, Poland., 2013-05-21 to 2013-05-23
Notes Approved no
Call Number MA @ admin @ Serial 2891
Permanent link to this record
 

 
Author (up) Walkiewicz, A.; Bulak, P.; Brzezinska, M.; Wnuk, E.; Bieganowski, A.
Title Methane oxidation in heavy metal contaminated Mollic Gleysol under oxic and hypoxic conditions Type Journal Article
Year 2016 Publication Environmental Pollution Abbreviated Journal Environ. Pollut.
Volume 213 Issue Pages 403-411
Keywords Soil; Methane oxidation; CH4; Heavy metals; Oxygen status; Dehydrogenase; activity; methanotrophic bacteria; dehydrogenase-activity; potential activity; forest soils; responses; landfill; community; ch4; co2; bioremediation
Abstract Soils are the largest terrestrial sink for methane (CH4). However, heavy metals may exert toxicity to soil microorganisms, including methanotrophic bacteria. We tested the effect of lead (Pb), zinc (Zn) and nickel (Ni) on CH4 oxidation (1% v/v) and dehydrogenase activity, an index of the activity of the total soil microbial community in Mollic Gleysol soil in oxic and hypoxic conditions (oxia and hypoxia, 20% and 10% v/v O2, respectively). Metals were added in doses corresponding to the amounts permitted of Pb, Zn, Ni in agricultural soils (60, 120, 35 mg kg(-1), respectively), and half and double of these doses. Relatively low metal contents and O2 status reflect the conditions of most agricultural soils of temperate regions. Methane consumption showed high tolerance to heavy metals. The effect of O2 status was stronger than that of metals. CH4 consumption was enhanced under hypoxia, where both the start and the completion of the control and contaminated treatment were faster than under oxic conditions. Dehydrogenase activity, showed higher sensitivity to the contamination (except for low Ni dose), with a stronger effect of heavy metals, than that of the O2 status.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Newsletter July 2016 Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4771
Permanent link to this record