toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Harstad, O.M.; Bonesmo, H.S.; Özkan, S. url  openurl
  Title MACSUR – utfordringer for husdyrproduksjon i et framtidig klima (MACSUR- Challenges for livestock production in a future climate) Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords LiveM  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Bioforsk-konferansen 2014, Hamar Norway, 2014-02-01 to 2014-02-04  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2466  
Permanent link to this record
 

 
Author (up) Jing, Q.; Bélanger, G.; Baron, V.; Bonesmo, H.; Virkajärvi, P. url  doi
openurl 
  Title Simulating the Nutritive Value of Timothy Summer Regrowth Type Journal Article
  Year 2013 Publication Agronomy Journal Abbreviated Journal Agronomy Journal  
  Volume 105 Issue 3 Pages 563  
  Keywords varying n nutrition; cation-anion difference; spring growth; swine manure; leaf-area; nitrogen; yield; model; digestibility; dynamics  
  Abstract The process-based grass model, CATIMO, simulates the spring growth and nutritive value of timothy (Phleum pratense L.), a forage species widely grown in Scandinavia and Canada, but the nutritive value of the summer regrowth has never been simulated. Our objective was to improve CATIMO for simulating the N concentration, neutral detergent fiber (NDF), in vitro digestibility of NDF (dNDF), and in vitro true digestibility of dry matter (IVTD) of summer regrowth. Daily changes in summer regrowth nutritive value were simulated by modifying key crop parameters that differed from spring growth. More specifically, the partitioning fraction to leaf blades was increased to increase the leaf-to-weight ratio, and daily changes in NDF and dNDF of leaf blades and stems were reduced. The modified CATIMO model was evaluated with data from four independent experiments in eastern and western Canada and Finland. The model performed better for eastern Canada than for the other locations, but the nutritive value attributes of the summer regrowth across locations (range of normalized RMSE = 8-25%, slope < 0.17, R-2 < 0.10) were not simulated as well as those of the spring growth (range of normalized RMSE = 4-16%, 0.85 < slope < 1.07, R-2 > 0.61). These modeling results highlight knowledge gaps in timothy summer regrowth and prospective research directions: improved knowledge of factors controlling the nutritive value of the timothy summer regrowth and experimental measurements of leaf-to-weight ratio and of the nutritive value of leaves and stems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-1962 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM Approved no  
  Call Number MA @ admin @ Serial 4493  
Permanent link to this record
 

 
Author (up) Jing, Q.; Bélanger, G.; Baron, V.; Bonesmo, H.; Virkajärvi, P.; Young, D. url  doi
openurl 
  Title Regrowth simulation of the perennial grass timothy Type Journal Article
  Year 2012 Publication Ecological Modelling Abbreviated Journal Ecol. Model.  
  Volume 232 Issue Pages 64-77  
  Keywords biomass; carbohydrate; leaf area index; n uptake; reserve-dependent growth; temperature; nutritive-value; carbohydrate reserves; phleum-pratense; catimo model; leaf-area; nitrogen-fertilization; spring harvest; meadow fescue; tall fescue; growth  
  Abstract Several process-based models for simulating the growth of perennial grasses have been developed but few include the simulation of regrowth. The model CATIMO simulates the primary growth of timothy (Phleum pratense L), an important perennial forage grass species in northern regions of Europe and North America. Our objective was to further develop the model CATIMO to simulate timothy regrowth using the concept of reserve-dependent growth. The performance of this modified CATIMO model in simulating leaf area index (LAI), biomass dry matter (DM) yield, and N uptake of regrowth was assessed with data from four independent field experiments in Norway, Finland, and western and eastern Canada using an approach that combines graphical comparison and statistical analysis. Biomass DM yield and N uptake of regrowth were predicted at the same accuracy as primary growth with linear regression coefficients of determination between measured and simulated values greater than 0.79, model simulation efficiencies greater than 0.78, and normalized root mean square errors (14-30% for biomass and 24-34% for N uptake) comparable with the coefficients of variation of measured data (1-21% for biomass and 1-25% for N uptake). The model satisfactorily simulated the regrowth LAI but only up to a value of about 4.0. The modified CATIMO model with its capacity to simulate regrowth provides a framework to simulate perennial grasses with multiple harvests, and to explore management options for sustainable grass production under different environmental conditions. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM Approved no  
  Call Number MA @ admin @ Serial 4473  
Permanent link to this record
 

 
Author (up) Özkan, á¹¢.; Bonesmo, H.; Østerås, O.; Harstad, O.M. url  openurl
  Title Effect of Increased Somatic Cell Count and Replacement Rate on Greenhouse Gas Emissions in Norwegian Dairy Herds Type Report
  Year 2014 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 3 Issue Pages Sp3-1  
  Keywords  
  Abstract Dairy sector contributes around 4% of global greenhouse gas (GHG) emissions, of which 2/3 and 1/3 are attributed to milk and meat production, respectively. The main GHGs released from dairy farms are methane, nitrous oxide and carbon dioxide. The increased trend in emissions has stimulated research evaluating alternative mitigation options. Much of the work to date has focused on animal breeding, dietary factors and rumen manipulation. There have been little studies assessing the impact of secondary factors such as animal health on emissions at farm level. Production losses associated with udder health are significant. Somatic cell count (SCC) is an indicator on udder health. In Norway, around 45, 60 and 70% of cows in a dairy herd at first, second and third lactation are expected to have SCC of 50,000 cells/ml and above. Another indirect factor is replacement rate. Increasing the replacement rate due to health disorders, infertility and reduced milk yield is likely to increase the total farm emissions if the milking heifer replacements are kept in the herd.In this study, the impact of elevated SCC (200,000 cells/ml and above) and replacement rate on farm GHG emissions was evaluated. HolosNor, a farm scale model adapting IPCC methodology was used to estimate net farm GHG emissions. Preliminary results indicate an increasing trend in emissions (per kg milk and meat) as the SCC increases. Results suggest that animal health should be considered as an indirect mitigation strategy; however, further studies are required to enable comparisons of different farming systems. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2218  
Permanent link to this record
 

 
Author (up) Özkan, Ş.; Ahmadi, B.V.; Bonesmo, H.; Østerås, O.; Stott, A.; Harstad, O.M. url  doi
openurl 
  Title Impact of animal health on greenhouse gas emissions Type Journal Article
  Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences  
  Volume 6 Issue 01 Pages 24-25  
  Keywords dairy; GHG emissions; cull rate; health; HolosNor  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-4700 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4573  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: