|   | 
Details
   web
Records
Author Rolinski, S.; Weindl, I.; Heinke, J.; Bodirsky, B.L.; Biewald, A.; Lotze-Campen, H.
Title Environmental impacts of grassland management and livestock production Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The potential of grasslands to sequester carbon and provide feed for livestock production depends on the one hand on climatic conditions but secondly on management and grazing pressure. Using a global vegetation model considering different management and grazing options, effects of livestock density on primary productivity can be assessed. It is expected that low animal densities enhance productivity whereas increasing grazing pressure may deteriorate grass plants. Thus, the optimal animal density depend on the specific primary production of the pasture and optimal grazing intensity. Using these optimal grass yields, the impacts of livestock production on resource use is assessed by applying the global land use model MAgPIE. This model integrates a detailed representation of the livestock sector and integrates socio-economic regional information with spatially explicit biophysical data. With scenario analysis we analyze the impact of livestock production on future deforestation and land use. Our results indicate that the reduction of animal derived calory demand has a huge potential to spare land for nature and reduce deforestation. On the supply side, feeding efficiency gains can help to decrease demand for land and overall biomass requirements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium (up)
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5078
Permanent link to this record
 

 
Author Bodirsky, B.L.; Rolinski, S.; Biewald, A.; Weindl, I.; Popp, A.; Lotze-Campen, H.
Title Global Food Demand Scenarios for the 21st Century Type Journal Article
Year 2015 Publication PLoS One Abbreviated Journal PLoS One
Volume 10 Issue 11 Pages e0139201
Keywords
Abstract Long-term food demand scenarios are an important tool for studying global food security and for analysing the environmental impacts of agriculture. We provide a simple and transparent method to create scenarios for future plant-based and animal-based calorie demand, using time-dependent regression models between calorie demand and income. The scenarios can be customized to a specific storyline by using different input data for gross domestic product (GDP) and population projections and by assuming different functional forms of the regressions. Our results confirm that total calorie demand increases with income, but we also found a non-income related positive time-trend. The share of animal-based calories is estimated to rise strongly with income for low-income groups. For high income groups, two ambiguous relations between income and the share of animal-based products are consistent with historical data: First, a positive relation with a strong negative time-trend and second a negative relation with a slight negative time-trend. The fits of our regressions are highly significant and our results compare well to other food demand estimates. The method is exemplarily used to construct four food demand scenarios until the year 2100 based on the storylines of the IPCC Special Report on Emissions Scenarios (SRES). We find in all scenarios a strong increase of global food demand until 2050 with an increasing share of animal-based products, especially in developing countries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium (up)
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4997
Permanent link to this record
 

 
Author Humpenöder, F.; Popp, A.; Stevanovic, M.; Müller, C.; Bodirsky, B.L.; Bonsch, M.; Dietrich, J.P.; Lotze-Campen, H.; Weindl, I.; Biewald, A.; Rolinski, S.
Title Land-use and carbon cycle responses to moderate climate change: implications for land-based mitigation Type Journal Article
Year 2015 Publication Environmental Science and Technology Abbreviated Journal Environ Sci Technol
Volume 49 Issue 11 Pages 6731-6739
Keywords
Abstract Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936x ISBN Medium (up)
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4998
Permanent link to this record
 

 
Author Wang, X.; Biewald, A.; Dietrich, J.P.; Schmitz, C.; Lotze-Campen, H.; Humpenöder, F.; Bodirsky, B.L.; Popp, A.
Title Taking account of governance: Implications for land-use dynamics, food prices, and trade patterns Type Journal Article
Year 2016 Publication Ecological Economics Abbreviated Journal Ecol. Econ.
Volume 122 Issue Pages 12-24
Keywords
Abstract Highlights • Governance impacts on land use dynamics are modeled at the global scale with an agro-economic dynamic optimization model. • Improved governance performance lowers deforestation, reduces cropland expansion and increases agricultural yield. • Good governance makes a decisive difference in investment for increasing yields in developing regions. • Weak governance increases food prices, particularly in Sub-Saharan Africa and Southeast Asia. • Improving governance performance has significant impacts on poverty reduction. Abstract Deforestation, mainly caused by unsustainable agricultural expansion, results in a loss of biodiversity and an increase in greenhouse gas emissions, as well as impinges on local livelihoods. Countries’ governance performance, particularly with respect to property rights security, exerts significant impacts on land-use patterns by affecting agricultural yield-related technological investment and cropland expansion. This study aims to incorporate governance factors into a recursive agro-economic dynamic model to simulate governance impacts on land-use patterns at the global scale. Due to the difficulties of including governance indicators directly into numerical models, we use lending interest rates as discount rates to reflect risk-accounting factors associated with different governance scenarios. In addition to a reference scenario, three scenarios with high, low and mixed divergent discount rates are formed to represent weak, strong and fragmented governance. We find that weak governance leads to slower yield growth, increased cropland expansion and associated deforestation, mainly in Latin America, Sub-Saharan Africa, South Asia and Southeast Asia. This is associated with increasing food prices, particularly in Sub-Saharan Africa and Southeast Asia. By contrast, strong governance performance provides a stable political and economic situation which may bring down deforestation rates, stimulate investment in agricultural technologies, and induce fairly strong decreases in food prices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-8009 ISBN Medium (up)
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 5002
Permanent link to this record
 

 
Author Stevanović, M.; Popp, A.; Lotze-Campen, H.; Dietrich, J.P.; Müller, C.; Bonsch, M.; Schmitz, C.; Bodirsky, B.L.; Humpenöder, F.; Weindl, I.
Title The impact of high-end climate change on agricultural welfare Type Journal Article
Year 2016 Publication Science Advances Abbreviated Journal Sci. Adv.
Volume 2 Issue 8 Pages e1501452
Keywords ftnotmacsur
Abstract Climate change threatens agricultural productivity worldwide, resulting in higher food prices. Associated economic gains and losses differ not only by region but also between producers and consumers and are affected by market dynamics. On the basis of an impact modeling chain, starting with 19 different climate projections that drive plant biophysical process simulations and ending with agro-economic decisions, this analysis focuses on distributional effects of high-end climate change impacts across geographic regions and across economic agents. By estimating the changes in surpluses of consumers and producers, we find that climate change can have detrimental impacts on global agricultural welfare, especially after 2050, because losses in consumer surplus generally outweigh gains in producer surplus. Damage in agriculture may reach the annual loss of 0.3% of future total gross domestic product at the end of the century globally, assuming further opening of trade in agricultural products, which typically leads to interregional production shifts to higher latitudes. Those estimated global losses could increase substantially if international trade is more restricted. If beneficial effects of atmospheric carbon dioxide fertilization can be realized in agricultural production, much of the damage could be avoided. Although trade policy reforms toward further liberalization help alleviate climate change impacts, additional compensation mechanisms for associated environmental and development concerns have to be considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium (up)
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 5003
Permanent link to this record