toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rolinski, S.; Weindl, I.; Heinke, J.; Bodirsky, B.L.; Biewald, A.; Lotze-Campen, H. url  doi
openurl 
  Title Pasture harvest, carbon sequestration and feeding potentials under different grazing intensities Type Journal Article
  Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences  
  Volume 6 Issue 01 Pages 43-45  
  Keywords global dynamic vegetation model; LPJmL; grasslands; livestock production  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4541  
Permanent link to this record
 

 
Author Rolinski, S.; Weindl, I.; Heinke, J.; Bodirsky, B.L.; Biewald, A.; Lotze-Campen, H. url  openurl
  Title Environmental impacts of grassland management and livestock production Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The potential of grasslands to sequester carbon and provide feed for livestock production depends on the one hand on climatic conditions but secondly on management and grazing pressure. Using a global vegetation model considering different management and grazing options, effects of livestock density on primary productivity can be assessed. It is expected that low animal densities enhance productivity whereas increasing grazing pressure may deteriorate grass plants. Thus, the optimal animal density depend on the specific primary production of the pasture and optimal grazing intensity. Using these optimal grass yields, the impacts of livestock production on resource use is assessed by applying the global land use model MAgPIE. This model integrates a detailed representation of the livestock sector and integrates socio-economic regional information with spatially explicit biophysical data. With scenario analysis we analyze the impact of livestock production on future deforestation and land use. Our results indicate that the reduction of animal derived calory demand has a huge potential to spare land for nature and reduce deforestation. On the supply side, feeding efficiency gains can help to decrease demand for land and overall biomass requirements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5078  
Permanent link to this record
 

 
Author Biewald, A.; Lotze-Campen, H.; Otto, I.; Brinckmann, N.; Bodirsky, B.; Weindl, I.; Popp, A.; Schellnhuber, H.J. url  openurl
  Title The Impact of Climate Change on Costs of Food and People Exposed to Hunger at Subnational Scale Type Report
  Year 2015 Publication PIK Report Abbreviated Journal  
  Volume 128 Issue Pages 73  
  Keywords ftnotmacsur  
  Abstract Climate change and socioeconomic developments will have a decisive impact on people exposed to hunger. This study analyses climate change impacts on agriculture and potential implications for the occurrence of hunger under different socioeconomic scenarios for 2030, focusing on the world regions most affected by poverty today: the Middle East and North Africa, South Asia, and Sub-Saharan Africa. We use a spatially explicit, agroeconomic land-use model to assess agricultural vulnerability to climate change. The aims of our study are to provide spatially explicit projections of climate change impacts on Costs of Food, and to combine them with spatially explicit hunger projections for the year 2030, both under a poverty, as well as a prosperity scenario. Our model results indicate that while average yields decrease with climate change in all focus regions, the impact on the Costs of Food is very diverse. Costs of Food increase most in the Middle East and North Africa, where available agricultural land is already fully utilized and options to import food are limited. The increase is least in Sub-Saharan Africa, since production there can be shifted to areas which are only marginally affected by climate change and imports from other regions increase. South Asia and Sub-Saharan Africa can partly adapt to climate change, in our model, by modifying trade and expanding agricultural land. In the Middle East and North Africa, almost the entire population is affected by increasing Costs of Food, but the share of people vulnerable to hunger is relatively low, due to relatively strong economic development in these projections. In Sub-Saharan Africa, the Vulnerability to Hunger will persist, but increases in Costs of Food are moderate. While in South Asia a high share of the population suffers from increases in Costs of Food and is exposed to hunger, only a negligible number of people will be exposed at extreme levels. Independent of the region, the impacts of climate change are less severe in a richer and more globalized world. Adverse climate impacts on the Costs of Food could be moderated by promoting technological progress in agriculture. Improving market access would be advantageous for farmers, providing the opportunity to profitably increase production in the Middle East and North Africa as well as in South Asia, but may lead to increasing Costs of Food for consumers. In the long-term perspective until 2080, the consequences of climate change will become even more severe: while in 2030 56% of the global population may face increasing Costs of Food in a poor and fragmented world, in 2080 the proportion will rise to 73%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Potsdam Editor  
  Language Summary Language Original Title  
  Series Editor Potsdam-Institut für Klimafolgenforschung Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 5000  
Permanent link to this record
 

 
Author Stevanović, M.; Popp, A.; Lotze-Campen, H.; Dietrich, J.P.; Müller, C.; Bonsch, M.; Schmitz, C.; Bodirsky, B.L.; Humpenöder, F.; Weindl, I. url  doi
openurl 
  Title The impact of high-end climate change on agricultural welfare Type Journal Article
  Year 2016 Publication Science Advances Abbreviated Journal Sci. Adv.  
  Volume 2 Issue 8 Pages e1501452  
  Keywords ftnotmacsur  
  Abstract Climate change threatens agricultural productivity worldwide, resulting in higher food prices. Associated economic gains and losses differ not only by region but also between producers and consumers and are affected by market dynamics. On the basis of an impact modeling chain, starting with 19 different climate projections that drive plant biophysical process simulations and ending with agro-economic decisions, this analysis focuses on distributional effects of high-end climate change impacts across geographic regions and across economic agents. By estimating the changes in surpluses of consumers and producers, we find that climate change can have detrimental impacts on global agricultural welfare, especially after 2050, because losses in consumer surplus generally outweigh gains in producer surplus. Damage in agriculture may reach the annual loss of 0.3% of future total gross domestic product at the end of the century globally, assuming further opening of trade in agricultural products, which typically leads to interregional production shifts to higher latitudes. Those estimated global losses could increase substantially if international trade is more restricted. If beneficial effects of atmospheric carbon dioxide fertilization can be realized in agricultural production, much of the damage could be avoided. Although trade policy reforms toward further liberalization help alleviate climate change impacts, additional compensation mechanisms for associated environmental and development concerns have to be considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5003  
Permanent link to this record
 

 
Author Humpenöder, F.; Popp, A.; Stevanovic, M.; Müller, C.; Bodirsky, B.L.; Bonsch, M.; Dietrich, J.P.; Lotze-Campen, H.; Weindl, I.; Biewald, A.; Rolinski, S. url  doi
openurl 
  Title Land-use and carbon cycle responses to moderate climate change: implications for land-based mitigation Type Journal Article
  Year 2015 Publication Environmental Science and Technology Abbreviated Journal Environ Sci Technol  
  Volume 49 Issue 11 Pages 6731-6739  
  Keywords  
  Abstract Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0013-936x ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4998  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: