|   | 
Details
   web
Records
Author Biewald, A.
Title Climate dependent equilibrium model Type Report
Year 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-T2.3
Keywords
Abstract In the framework of AgMIP (Agricultural Model Intercomparison Project; www.agmip.org), several articles have been published in which about 10 leading, agro-economic models analysed the impact of climate change on agricultural yields, area, consumption and food prices (Lotze-Campen et al. 2014, Nelson et. al 2014a,b Schmitz et al. 2014). A part of these articles are available freely through the publisher (e.g. http://www.pnas.org/content/111/9/3274). PIK has not only contributed through model simulations with the spatially explicit, agro-economic model MAgPIE, but also by coordinating this activity. Starting with AgMIP phase II in 2015, AgMIP has now for the first time conducted the model-analysis for different “Shared Socio-economic Pathways” (short SSPs). A first study has been published in the renowned journal “Environmental Research Letters” (Wiebe et al. 2015). These are important contributions to task 2.3 which aimed at simulating the impact of global climate changes on agricultural systems.Another study which is under revision in the journal PNAS, investigates the impact of climate change on agricultural welfare. The results of this paper are based on simulations with 20 different General Circulation Models (GCMs). This provides the opportunity to understand the uncertainty inherent in the different climate models better and improves the credibility of results.All mentioned articles and results are based on harmonized yield changes, which are a result of multi-model simulations, conducted in the framework of ISI-MIP (Inter-Sectoral Impact Model Intercomparison Project) and coordinated at PIK. These model results are publicly available (www.isi-mip.org) and part of an open source strategy of the institute. The modelling group around the agro-economic model MAgPIE (Model of Agriculture and its Impact on the Environment) currently discusses an open source strategy for publishing the model code. As a first step, a detailed description of the model will be available shortly (http://redmine.pik-potsdam.de/projects/magpie/wiki).PIK and the modelling group around MAgPIE have also contributed to the geoportal GLUES (Global Assessment of Land Use Dynamics, Greenhouse Gas Emissions and Ecosystem Services) where project partners can publish and share global and regional data sets as well as model results on scenarios of land use, climate change and economic development. MAgPIE results on landuse change, emissions and deforestation for different socio-economic scenarios have been made available there (http://catalog-glues.ufz.de/terraCatalog/Start.do;jsessionid=80F6A3D2C446674B898881D0589887E4). No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes Approved no
Call Number MA @ admin @ Serial 2112
Permanent link to this record
 

 
Author Biewald, A.
Title Representative Agricultural Pathways for Europe Type Report
Year 2016 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 9 C6 - Issue Pages Sp9-1
Keywords
Abstract Agricultural aspects have been covered in the scenario process on shared socio-economic pathways (SSPs), but only to a limited extent. In order to analyze the future dynamics of agricultural development they need to be complemented and specified by Representative Agricultural Pathways (RAPs), which cover different aspects of agricultural development as for example European agricultural and domestic policy, environmental policies,  different livestock management systems, cropping systems or irrigation efficiencies.In this paper we will develop a general framework for RAPs where we define for each SSP the corresponding specific agricultural development. Some aspects of the above mentioned specifics can be derived from the definitions in the SSPs, as for example irrigation efficiencies which are linked to technological development. Agricultural policies on the other hand are not included in the SSP definitions. Here we will define agricultural and environmental policies, including the available funding in each area of the common agricultural policy (CAP) (pillars 1 and 2). As RAPs can only to a small degree be developed as European guidelines and implemented unilaterally, it is important to translate the overall storylines into specific scenario parameterization at national levels. Concerned by this are 1. national policies, as well as the agri-environmental schemes of the CAP in Pillar II, 2. livestock efficiencies and the development of extensive and intensive farm management, and  3. crop management systems.Additionally we will define which respresentative concentration pathways (RCPs) will match best the future agricultural and agro-economic trajectories. The following 5 preliminary RAPs for Europe will be further developed in our analysis:EU-RAP1 (Sustainable Europe) : strong CAP, strong shift on environmental regulation, no producer support, green CAP with strong mititgation componentEU-RAP2 (Middle of the road): BAU or things will stay as they are.EU-RAP3 (Fragmented Europe): Europe breaks up, rich countries support farmers with national subsidies, poor countries do not. There is no CAP anymoreEU-RAP4 (Two Europes): Europe is divided in a poor and a rich part. In the rich part a green and environmental friendly  CAP will be implemented, in the poor part of Europe, the CAP will cease to existEU-RAP5(Fossil fueled Europe): free market world, strong institutions, weak on enviromental regulations, low domestic polices? Local green CAP without mitigation
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up)
Notes Approved no
Call Number MA @ admin @ Serial 4836
Permanent link to this record
 

 
Author Popp, A.; Humpenöder, F.; Weindl, I.; Bodirsky, B.L.; Bonsch, M.; Lotze-Campen, H.; Müller, C.; Biewald, A.; Rolinski, S.; Stevanovic, M.; Dietrich, J.P.
Title Land-use protection for climate change mitigation Type Journal Article
Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change
Volume 4 Issue 12 Pages 1095-1098
Keywords avoided deforestation; forest conservation; carbon emissions; co2 emissions; productivity; scarcity; stocks; redd
Abstract Land-use change, mainly the conversion of tropical forests to agricultural land, is a massive source of carbon emissions and contributes substantially to global warming(1-3). Therefore, mechanisms that aim to reduce carbon emissions from deforestation are widely discussed, A central challenge is the avoidance of international carbon leakage if forest conservation is not implemented globally’’, Here, We show that forest conservation schemes, even if implemented globally, could lead to another type of carbon leakage by driving cropland expansion in non-forested areas that are not subject to forest conservation schemes (non-forest leakage). These areas have a smaller. but still considerable potential to store carbon(5,6). We show that a global forest policy could reduce carbon emissions by 77 Gt CO2, but would still allow for decreases in carbon stocks of non-forest land by 96 Gt CO2, until 2100 due to non-forest leakage effects. Furthermore; abandonment of agricultural hand and associated carbon uptake through vegetation regrowth is hampered. Effective mitigation measures thus require financing structures and conservation investments that cover the full range of carbon-rich ecosystems. However, our analysis indicates that greater agricultural productivity increases would be needed to compensate for such restrictions on agricultural expansion.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1758-678x 1758-6798 ISBN Medium Article
Area Expedition Conference (up)
Notes CropM, LiveM, TradeM Approved no
Call Number MA @ admin @ Serial 4540
Permanent link to this record
 

 
Author Rolinski, S.; Weindl, I.; Heinke, J.; Bodirsky, B.L.; Biewald, A.; Lotze-Campen, H.
Title Pasture harvest, carbon sequestration and feeding potentials under different grazing intensities Type Journal Article
Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences
Volume 6 Issue 01 Pages 43-45
Keywords global dynamic vegetation model; LPJmL; grasslands; livestock production
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference (up)
Notes CropM, LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4541
Permanent link to this record
 

 
Author Bodirsky, B.L.; Popp, A.; Lotze-Campen, H.; Dietrich, J.P.; Rolinski, S.; Weindl, I.; Schmitz, C.; Müller, C.; Bonsch, M.; Humpenöder, F.; Biewald, A.; Stevanovic, M.
Title Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution Type Journal Article
Year 2014 Publication Nature Communications Abbreviated Journal Nat. Comm.
Volume 5 Issue Pages 3858
Keywords Animals; Crops, Agricultural/metabolism/*supply & distribution; Environmental Pollution/*prevention & control; *Food Supply; Humans; Models, Theoretical; Nitrogen Fixation; *Population Growth; Reactive Nitrogen Species/*supply & distribution
Abstract Reactive nitrogen (Nr) is an indispensable nutrient for agricultural production and human alimentation. Simultaneously, agriculture is the largest contributor to Nr pollution, causing severe damages to human health and ecosystem services. The trade-off between food availability and Nr pollution can be attenuated by several key mitigation options, including Nr efficiency improvements in crop and animal production systems, food waste reduction in households and lower consumption of Nr-intensive animal products. However, their quantitative mitigation potential remains unclear, especially under the added pressure of population growth and changes in food consumption. Here we show by model simulations, that under baseline conditions, Nr pollution in 2050 can be expected to rise to 102-156% of the 2010 value. Only under ambitious mitigation, does pollution possibly decrease to 36-76% of the 2010 value. Air, water and atmospheric Nr pollution go far beyond critical environmental thresholds without mitigation actions. Even under ambitious mitigation, the risk remains that thresholds are exceeded.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Medium Article
Area Expedition Conference (up)
Notes CropM Approved no
Call Number MA @ admin @ Serial 4513
Permanent link to this record