|   | 
Details
   web
Records
Author Sándor, R.; Barcza, Z.; Hidy, D.; Lellei-Kovács, E.; Ma, S.; Bellocchi, G.
Title (up) Modelling of grassland fluxes in Europe: evaluation of two biogeochemical models Type Journal Article
Year 2016 Publication Agriculture, Ecosystems and Environment Abbreviated Journal Agric. Ecosyst. Environ.
Volume 215 Issue Pages 1-19
Keywords carbon-water fluxes; climate change; grasslands; model comparison; net ecosystem exchange; terrestrial carbon balance; pasture simulation-model; climate-change; nitrous-oxide; land-use; co2; photosynthesis; responses; water
Abstract Two independently developed simulation models – the grassland-specific PaSim and the biome-generic Biome-BGC MuSo (BBGC MuSo) – linking climate, soil, vegetation and management to ecosystem biogeochemical cycles were compared in a simulation of carbon (C) and water fluxes. The results were assessed against eddy-covariance flux data from five observational grassland sites representing a range of conditions in Europe: Grillenburg in Germany, Laqueuille in France with both extensive and intensive management, Monte Bondone in Italy and Oensingen in Switzerland. Model comparison (after calibration) gave substantial agreement, the performances being marginal to acceptable for weekly-aggregated gross primary production and ecosystem respiration (R-2 similar to 0.66 – 0.91), weekly evapotranspiration (R-2 similar to 0.78 – 0.94), soil water content in the topsoil (R-2 similar to 0.1 -0.7) and soil temperature (R-2 similar to 0.88 – 0.96). The bias was limited to the range -13 to 9 g C m(-2) week(-1) for C fluxes (-11 to 8 g C m(-2) week(-1) in case of BBGC MuSo, and -13 to 9 g C m(-2) week(-1) in case of PaSim) and -4 to 6 mm week for water fluxes (with BBGC MuSo providing somewhat higher estimates than PaSim), but some higher relative root mean square errors indicate low accuracy for prediction, especially for net ecosystem exchange The sensitivity of simulated outputs to changes in atmospheric carbon dioxide concentration ([CO2]), temperature and precipitation indicate, with certain agreement between the two models, that C outcomes are dominated by [CO2] and temperature gradients, and are less due to precipitation. ET rates decrease with increasing [CO2] in PaSim (consistent with experimental knowledge), while lack of appropriate stomatal response could be a limit in BBGC MuSo responsiveness. Results of the study indicate that some of the errors might be related to the improper representation of soil water content and soil temperature. Improvement is needed in the model representations of soil processes (especially soil water balance) that strongly influence the biogeochemical cycles of managed and unmanaged grasslands. (C) 2015 Elsevier B.V. All rights reserved.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-8809 ISBN Medium Article
Area Expedition Conference
Notes CropM, LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4808
Permanent link to this record
 

 
Author Pulina, A.; Lai, R.; Salis, L.; Seddaiu, G.; Roggero, P.P.; Bellocchi, G.
Title (up) Modelling pasture production and soil temperature, water and carbon fluxes in Mediterranean grassland systems with the Pasture Simulation Model Type Journal Article
Year 2018 Publication Grass and Forage Science Abbreviated Journal Grass Forage Sci.
Volume 73 Issue 2 Pages 272-283
Keywords grassland production; Mediterranean pastures; model calibration; PaSim; sheep grazing systems; soil respiration
Abstract Grasslands play important roles in agricultural production and provide a range of ecosystem services. Modelling can be a valuable adjunct to experimental research in order to improve the knowledge and assess the impact of management practices in grassland systems. In this study, the PaSim model was assessed for its ability to simulate plant biomass production, soil temperature, water content, and total and heterotrophic soil respiration in Mediterranean grasslands. The study site was the extensively managed sheep grazing system at the Berchidda‐Monti Observatory (Sardinia, Italy), from which two data sets were derived for model calibration and validation respectively. A new model parameterization was derived for Mediterranean conditions from a set of eco‐physiological parameters. With the exception of heterotrophic respiration (Rh), for which modelling efficiency (EF) values were negative, the model outputs were in agreement with observations (e.g., EF ranging from ~0.2 for total soil respiration to ~0.7 for soil temperature). These results support the effectiveness of PaSim to simulate C cycle components in Mediterranean grasslands. The study also highlights the need of further model development to provide better representation of the seasonal dynamics of Mediterranean annual species‐rich grasslands and associated peculiar Rh features, for which the modelling is only implicitly being undertaken by the current PaSim release.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium article
Area LiveM Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4973
Permanent link to this record
 

 
Author Virkajärvi, P.; Korhonen, P.; Bellocchi, G.; Curnel, Y.; Wu, L.; Jégo, G.; Persson, T.; Höglind, M.; Van Oijen, M.; Gustavsson, A.-M.; Kipling, R.P.
Title (up) Modelling responses of forages to climate change with a focus on nutritive value Type Journal Article
Year 2016 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences
Volume 7 Issue 03 Pages 227-228
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-4700 ISBN Medium
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4876
Permanent link to this record
 

 
Author Wu, L.; Whitmore, A.P.; Bellocchi, G.
Title (up) Modelling the impact of environmental changes on grassland systems with SPACSYS Type Journal Article
Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences
Volume 6 Issue 01 Pages 37-39
Keywords grassland production; dynamic simulation model; primary production; ecosystem respiration
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-4700 2040-4719 ISBN Medium Article
Area Expedition Conference
Notes CropM, LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4655
Permanent link to this record
 

 
Author Sándor, R.; Barcza, Z.; Acutis, M.; Doro, L.; Hidy, D.; Köchy, M.; Minet, J.; Lellei-Kovács, E.; Ma, S.; Perego, A.; Rolinski, S.; Ruget, F.; Sanna, M.; Seddaiu, G.; Wu, L.; Bellocchi, G.
Title (up) Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble performance Type Journal Article
Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume Issue Pages
Keywords Biomass; Grasslands; Modelling; Multi-model ensemble; Soil processes
Abstract • We simulate biomass, soil water content (SWC) and temperature (ST) in grasslands. • We compare nine models to the multi-model median (MMM) at nine sites. • With model calibration, we obtain satisfactory estimates of ST, less of SWC and biomass. • We observe discrepancies across models in the simulation of grassland processes. • We improve performance with multi-model approach. This study presents results from a major grassland model intercomparison exercise, and highlights the main challenges faced in the implementation of a multi-model ensemble prediction system in grasslands. Nine, independently developed simulation models linking climate, soil, vegetation and management to grassland biogeochemical cycles and production were compared in a simulation of soil water content (SWC) and soil temperature (ST) in the topsoil, and of biomass production. The results were assessed against SWC and ST data from five observational grassland sites representing a range of conditions – Grillenburg in Germany, Laqueuille in France with both extensive and intensive management, Monte Bondone in Italy and Oensingen in Switzerland – and against yield measurements from the same sites and other experimental grassland sites in Europe and Israel. We present a comparison of model estimates from individual models to the multi-model ensemble (represented by multi-model median: MMM). With calibration (seven out of nine models), the performances were acceptable for weekly-aggregated ST (R² > 0.7 with individual models and >0.8–0.9 with MMM), but less satisfactory with SWC (R² < 0.6 with individual models and < ∼ 0.5 with MMM) and biomass (R² < ∼0.3 with both individual models and MMM). With individual models, maximum biases of about −5 °C for ST, −0.3 m3 m−3 for SWC and 360 g DM m−2 for yield, as well as negative modelling efficiencies and some high relative root mean square errors indicate low model performance, especially for biomass. We also found substantial discrepancies across different models, indicating considerable uncertainties regarding the simulation of grassland processes. The multi-model approach allowed for improved performance, but further progress is strongly needed in the way models represent processes in managed grassland systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium
Area LiveM Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 4768
Permanent link to this record