|   | 
Details
   web
Records
Author Bellocchi, G.; Rivington, M.; Acutis, M.
Title Deliberative processes for comprehensive evaluation of agro-ecological models Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Biophysical models are acknowledged for examining interactions of agro-ecological systems and fostering communication between scientists, managers and the public. As the role of models grows in importance, there is an increase in the need to assess their quality and performance (Bellocchi et al., 2010). However, the heterogeneity of factors influencing model outputs makes it difficult a full assessment of model features. Where models are used with or for stakeholders then model credibility depends not only on the outcomes of well-structured statistical evaluation but also less tangible factors may need to be addressed using complementary deliberative processes. To expand our horizons in the evaluation of crop and grassland models, approaches have been reviewed with emphasis on using combined metrics. Comprehensive evaluation of simulation models was developed to integrate expectations of stakeholders via a weighting system where lower and upper fuzzy bounds are applied to a set of evaluation metrics. A questionnaire-based survey helped understanding the multi-faceted knowledge and experience required and the substantial challenges posed by the deliberative process. MACSUR knowledge hub holds potential to advance in good modelling practice in relation with model evaluation (including access to appropriate software tools), an activity which is frequently neglected in the context of time-limited projects.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area (up) Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5071
Permanent link to this record
 

 
Author Sanna, M.; Acutis, M.; Bellocchi, G.
Title Interrelationship between evaluation metrics to assess agro-ecological models Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract When evaluating the performances of simulation models, the perception of the quality of the outputs may depend on the statistics used to compare simulated and observed data. In order to have a comprehensive understanding of model performance, the use of a variety of metrics is generally advocated. However, since they may be correlated, the use of two or more metrics may convey the same information, leading to redundancy. This study intends to investigate the interrelationship between evaluation metrics, with the aim of identifying the most useful set of indicators, for assessing simulation performance. Our focus is on agro-ecological modelling. Twenty-three performance indicators were selected to compare simulated and observed data of four agronomic and meteorological variables: above-ground biomass, leaf area index, hourly air relative humidity and daily solar radiation. Indicators were calculated on large data sets, collected to effectively apply correlation analysis techniques. For each variable, the interrelationship between each pair of indicators was evaluated, by computing the Spearman’s rank correlation coefficient. A definition of “stable correlation” was proposed, based on the test of heterogeneity, allowing to assess whether two or more correlation coefficients are equal. An optimal subset of indicators was identified, striking a balance between number of indicators, amount of provided information and information redundancy. They are: Index of Agreement, Squared Bias, Root Mean Squared Relative Error, Pattern Index, Persistence Model Efficiency and Spearman’s Correlation Coefficient. The present study was carried out in the context of CropM-LiveM cross-cutting activities of MACSUR knowledge hub.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area (up) Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5092
Permanent link to this record
 

 
Author Bellocchi, G.; Martin, R.; Shtiliyanova, A.; Ben Touhami, H.; Carrère, P.
Title Vul’Clim – Climate change vulnerability studies in the region Auvergne (France) Type Conference Article
Year 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The region Auvergne (France) is a major livestock territory in Europe (beef and dairy cattle with permanent grasslands), with a place in climate change regional studies assisting policy makers and actors in identifying adaptation and mitigation measures. Vul’Clim is a research grant (Bourse Recherche Filière) of the region Auvergne (February 2014-September 2015) to develop model-based vulnerability analysis approaches for a detailed assessment of climate change impacts at regional scale. Its main goal is the creation of a computer-aided platform for vulnerability assessment of grasslands, in interaction with stakeholders from a cluster of eco-enterprises. A modelling engine provided by the mechanistic, biogeochemical model PaSim (Pasture Simulation model) is the core of the platform. An action studies the changes of scales by varying the granularity of the data available at a given scale (e.g. climate data supplied by global scenarios) to let them being exploited at another scale (e.g. high-resolution pixels). Another action is to develop an assessment framework linking modelling tools to entry data and outputs, including a variety of components: data-entry manager at different spatial resolutions; automatic computation of indicators; gap-filling and data quality check; simulation kernel with the model(s) used; device to represent results as maps and integrated indicators.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area (up) Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5140
Permanent link to this record
 

 
Author Sandor, R.; Ehrhardt, F.; Grace, P.; Recous, S.; Smith, P.; Snow, V.; Soussana, J.-F.; Basso, B.; Bhatia, A.; Brilli, L.; Doltra, J.; Dorich, C.D.; Doro, L.; Fitton, N.; Grant, B.; Harrison, M.T.; Kirschbaum, M.U.F.; Klumpp, K.; Laville, P.; Leonard, J.; Martin, R.; Massad, R.-S.; Moore, A.; Myrgiotis, V.; Pattey, E.; Rolinski, S.; Sharp, J.; Skiba, U.; Smith, W.; Wu, L.; Zhang, Q.; Bellocchi, G.
Title Ensemble modelling of carbon fluxes in grasslands and croplands Type Journal Article
Year 2020 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 252 Issue Pages 107791
Keywords C fluxes; croplands; grasslands; multi-model ensemble; multi-model; median (mmm); soil organic-carbon; greenhouse-gas emissions; climate-change impacts; crop model; data aggregation; use efficiency; n2o emissions; maize; yield; wheat; productivity
Abstract Croplands and grasslands are agricultural systems that contribute to land–atmosphere exchanges of carbon (C). We evaluated and compared gross primary production (GPP), ecosystem respiration (RECO), net ecosystem exchange (NEE) of CO2, and two derived outputs – C use efficiency (CUE=-NEE/GPP) and C emission intensity (IntC= -NEE/Offtake [grazed or harvested biomass]). The outputs came from 23 models (11 crop-specific, eight grassland-specific, and four models covering both systems) at three cropping sites over several rotations with spring and winter cereals, soybean and rapeseed in Canada, France and India, and two temperate permanent grasslands in France and the United Kingdom. The models were run independently over multi-year simulation periods in five stages (S), either blind with no calibration and initialization data (S1), using historical management and climate for initialization (S2), calibrated against plant data (S3), plant and soil data together (S4), or with the addition of C and N fluxes (S5). Here, we provide a framework to address methodological uncertainties and contextualize results. Most of the models overestimated or underestimated the C fluxes observed during the growing seasons (or the whole years for grasslands), with substantial differences between models. For each simulated variable, changes in the multi-model median (MMM) from S1 to S5 was used as a descriptor of the ensemble performance. Overall, the greatest improvements (MMM approaching the mean of observations) were achieved at S3 or higher calibration stages. For instance, grassland GPP MMM was equal to 1632 g C m−2 yr-1 (S5) while the observed mean was equal to 1763 m-2 yr-1 (average for two sites). Nash-Sutcliffe modelling efficiency coefficients indicated that MMM outperformed individual models in 92.3 % of cases. Our study suggests a cautious use of large-scale, multi-model ensembles to estimate C fluxes in agricultural sites if some site-specific plant and soil observations are available for model calibration. The further development of crop/grassland ensemble modelling will hinge upon the interpretation of results in light of the way models represent the processes underlying C fluxes in complex agricultural systems (grassland and crop rotations including fallow periods).
Address 2020-06-08
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area (up) Expedition Conference
Notes LiveM Approved no
Call Number MA @ admin @ Serial 5230
Permanent link to this record
 

 
Author De Swaef, T.; Bellocchi, G.; Aper, J.; Lootens, P.; Roldan-Ruiz, I.
Title Use of identifiability analysis in designing phenotyping experiments for modelling forage production and quality Type Journal Article
Year 2019 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.
Volume 70 Issue 9 Pages 2587-2604
Keywords Breeding; grassland modelling; identifiability analysis; perennial; ryegrass; phenotyping; sensitivity analysis; pasture simulation-model; practical identifiability; crop; water; parameters; systems; carbon; uncertainty; sensitivity; emissions
Abstract Agricultural systems models are complex and tend to be over-parameterized with respect to observational datasets. Practical identifiability analysis based on local sensitivity analysis has proved effective in investigating identifiable parameter sets in environmental models, but has not been applied to agricultural systems models. Here, we demonstrate that identifiability analysis improves experimental design to ensure independent parameter estimation for yield and quality outputs of a complex grassland model. The Pasture Simulation model (PaSim) was used to demonstrate the effectiveness of practical identifiability analysis in designing experiments and measurement protocols within phe-notyping experiments with perennial ryegrass. Virtual experiments were designed combining three factors: frequency of measurements, duration of the experiment. and location of trials. Our results demonstrate that (i) PaSim provides sufficient detail in terms of simulating biomass yield and quality of perennial ryegrass for use in breeding, (ii) typical breeding trials are insufficient to parameterize all influential parameters, (iii) the frequency of measurements is more important than the number of growing seasons to improve the identifiability of PaSim parameters, and (iv) identifiability analysis provides a sound approach for optimizing the design of multi-location trials. Practical identifiability analysis can play an important role in ensuring proper exploitation of phenotypic data and cost-effective multi-location experimental designs. Considering the growing importance of simulation models, this study supports the design of experiments and measurement protocols in the phenotyping networks that have recently been organized.
Address 2020-02-14
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0957 ISBN Medium Article
Area (up) Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5231
Permanent link to this record