|   | 
Details
   web
Records
Author Gomara, I.; Bellocchi, G.; Martin, R.; Rodriguez-Fonseca, B.; Ruiz-Ramos, M.
Title Influence of climate variability on the potential forage production of a mown permanent grassland in the French Massif Central Type Journal Article
Year 2020 Publication Agricultural and Forest Meteorology Abbreviated Journal (up) Agricultural and Forest Meteorology
Volume 280 Issue Pages 107768
Keywords climate variability; grasslands; potential yield; climate services; forage production forecasts; french massif central; pasture simulation-model; dry-matter production; atmospheric; circulation; crop yield; SST anomalies; maize yield; managed grasslands; storm track; ENSO; impacts
Abstract Climate Services (CS) provide support to decision makers across socio-economic sectors. In the agricultural sector, one of the most important CS applications is to provide timely and accurate yield forecasts based on climate prediction. In this study, the Pasture Simulation model (PaSim) was used to simulate, for the period 1959–2015, the forage production of a mown grassland system (Laqueuille, Massif Central of France) under different management conditions, with meteorological inputs extracted from the SAFRAN atmospheric database. The aim was to generate purely climate-dependent timeseries of optimal forage production, a variable that was maximized by brighter and warmer weather conditions at the grassland. A long-term increase was observed in simulated forage yield, with the 1995–2015 average being 29% higher than the 1959–1979 average. Such increase seems consistent with observed rising trends in temperature and CO2, and multi-decadal changes in incident solar radiation. At interannual timescales, sea surface temperature anomalies of the Mediterranean (MED), Tropical North Atlantic (TNA), equatorial Pacific (El Niño Southern Oscillation) and the North Atlantic Oscillation (NAO) index were found robustly correlated with annual forage yield values. Relying only on climatic predictors, we developed a stepwise statistical multi-regression model with leave-one-out cross-validation. Under specific management conditions (e.g., three annual cuts) and from one to five months in advance, the generated model successfully provided a p-value<0.01 in correlation (t-test), a root mean square error percentage (%RMSE) of 14.6% and a 71.43% hit rate predicting above/below average years in terms of forage yield collection. This is the first modeling study on the possible role of large-scale oceanic–atmospheric teleconnections in driving forage production in Europe. As such, it provides a useful springboard to implement a grassland seasonal forecasting system in this continent.
Address 2020-06-08
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5233
Permanent link to this record
 

 
Author Kipling, R.P.; Bannink, A.; Bellocchi, G.; Dalgaard, T.; Fox, N.J.; Hutchings, N.J.; Kjeldsen, C.; Lacetera, N.; Sinabell, F.; Topp, C.F.E.; van Oijen, M.; Virkajärvi, P.; Scollan, N.D.
Title Modeling European ruminant production systems: Facing the challenges of climate change Type Journal Article
Year 2016 Publication Agricultural Systems Abbreviated Journal (up) Agricultural Systems
Volume 147 Issue Pages 24-37
Keywords Food security; Livestock systems; Modeling; Pastoral systems; Policy support; Ruminants
Abstract Ruminant production systems are important producers of food, support rural communities and culture, and help to maintain a range of ecosystem services including the sequestering of carbon in grassland soils. However, these systems also contribute significantly to climate change through greenhouse gas (GHG) emissions, while intensi- fication of production has driven biodiversity and nutrient loss, and soil degradation. Modeling can offer insights into the complexity underlying the relationships between climate change, management and policy choices, food production, and the maintenance of ecosystem services. This paper 1) provides an overview of how ruminant systems modeling supports the efforts of stakeholders and policymakers to predict, mitigate and adapt to climate change and 2) provides ideas for enhancing modeling to fulfil this role. Many grassland models can predict plant growth, yield and GHG emissions from mono-specific swards, but modeling multi-species swards, grassland quality and the impact of management changes requires further development. Current livestock models provide a good basis for predicting animal production; linking these with models of animal health and disease is a prior- ity. Farm-scale modeling provides tools for policymakers to predict the emissions of GHG and other pollutants from livestock farms, and to support the management decisions of farmers from environmental and economic standpoints. Other models focus on how policy and associated management changes affect a range of economic and environmental variables at regional, national and European scales. Models at larger scales generally utilise more empirical approaches than those applied at animal, field and farm-scales and include assumptions which may not be valid under climate change conditions. It is therefore important to continue to develop more realistic representations of processes in regional and global models, using the understanding gained from finer-scale modeling. An iterative process of model development, in which lessons learnt from mechanistic models are ap- plied to develop ‘smart’ empirical modeling, may overcome the trade-off between complexity and usability. De- veloping the modeling capacity to tackle the complex challenges related to climate change, is reliant on closer links between modelers and experimental researchers, and also requires knowledge-sharing and increasing technical compatibility across modeling disciplines. Stakeholder engagement throughout the process of model development and application is vital for the creation of relevant models, and important in reducing problems re- lated to the interpretation of modeling outcomes. Enabling modeling to meet the demands of policymakers and other stakeholders under climate change will require collaboration within adequately-resourced, long-term inter-disciplinary research networks
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521x ISBN Medium Review
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4734
Permanent link to this record
 

 
Author Bellocchi, G.; Rivington, M.; Matthews, K.; Acutis, M.
Title Deliberative processes for comprehensive evaluation of agroecological models. A review Type Journal Article
Year 2015 Publication Agronomy for Sustainable Development Abbreviated Journal (up) Agron. Sust. Developm.
Volume 35 Issue 2 Pages 589-605
Keywords component-oriented programing; deliberative approach; modeling; model evaluation; multiple metrics; stakeholders; decision-support-systems; environmental-models; performance evaluation; groundwater models; farming systems; climate-change; irene-dll; simulation; validation; integration
Abstract The use of biophysical models in agroecology has increased in the last few decades for two main reasons: the need to formalize empirical knowledge and the need to disseminate model-based decision support for decision makers (such as farmers, advisors, and policy makers). The first has encouraged the development and use of mathematical models to enhance the efficiency of field research through extrapolation beyond the limits of site, season, and management. The second reflects the increasing need (by scientists, managers, and the public) for simulation experimentation to explore options and consequences, for example, future resource use efficiency (i.e., management in sustainable intensification), impacts of and adaptation to climate change, understanding market and policy responses to shocks initiated at a biophysical level under increasing demand, and limited supply capacity. Production concerns thus dominate most model applications, but there is a notable growing emphasis on environmental, economic, and policy dimensions. Identifying effective methods of assessing model quality and performance has become a challenging but vital imperative, considering the variety of factors influencing model outputs. Understanding the requirements of stakeholders, in respect of model use, logically implies the need for their inclusion in model evaluation methods. We reviewed the use of metrics of model evaluation, with a particular emphasis on the involvement of stakeholders to expand horizons beyond conventional structured, numeric analyses. Two major topics are discussed: (1) the importance of deliberative processes for model evaluation, and (2) the role computer-aided techniques may play to integrate deliberative processes into the evaluation of agroecological models. We point out that (i) the evaluation of agroecological models can be improved through stakeholder follow-up, which is a key for the acceptability of model realizations in practice, (ii) model credibility depends not only on the outcomes of well-structured, numerically based evaluation, but also on less tangible factors that may need to be addressed using complementary deliberative processes, (iii) comprehensive evaluation of simulation models can be achieved by integrating the expectations of stakeholders via a weighting system of preferences and perception, (iv) questionnaire-based surveys can help understand the challenges posed by the deliberative process, and (v) a benefit can be obtained if model evaluation is conceived in a decisional perspective and evaluation techniques are developed at the same pace with which the models themselves are created and improved. Scientific knowledge hubs are also recognized as critical pillars to advance good modeling practice in relation to model evaluation (including access to dedicated software tools), an activity which is frequently neglected in the context of time-limited framework programs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1774-0746 1773-0155 ISBN Medium Review
Area Expedition Conference
Notes CropM, LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4551
Permanent link to this record
 

 
Author Lardy, R.; Bellocchi, G.; Martin, R.
Title Vuln-Indices: Software to assess vulnerability to climate change Type Journal Article
Year 2015 Publication Computers and Electronics in Agriculture Abbreviated Journal (up) Computers and Electronics in Agriculture
Volume 114 Issue Pages 53-57
Keywords climate change; Java; vulnerability indices; pasture simulation-model; integrated assessment; environmental-change; change impacts; system
Abstract Vuln-Indices Java-based software was developed on concepts of vulnerability to climate change of agro-ecological systems. It implements the calculation of vulnerability indices on series of state variables for assessments at both site and region levels. The tool is useful because synthetic indices help capturing complex processes and prove effective to identify the factors responsible for vulnerability and their relative importance. It is suggested that the tool may be plausible for use with stakeholders to disseminate information of climate change impacts. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1699 ISBN Medium Article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4648
Permanent link to this record
 

 
Author Eza, U.; Shtiliyanova, A.; Borras, D.; Bellocchi, G.; Carrère, P.; Martin, R.
Title An open platform to assess vulnerabilities to climate change: An application to agricultural systems Type Journal Article
Year 2015 Publication Ecological Informatics Abbreviated Journal (up) Ecological Informatics
Volume 30 Issue Pages 389-396
Keywords climate change; grasslands; modeling platform; vulnerability assessment; pasture simulation-model; software component; solar-radiation; crop production; change impacts; adaptation; indicator; makers
Abstract Numerous climate futures are now available from global climate models. Translation of climate data such as precipitation and temperatures into ecologically meaningful outputs for managers and planners is the next frontier. We describe a model-based open platform to assess vulnerabilities of agricultural systems to climate change on pixel-wise data. The platform includes a simulation modeling engine and is suited to work with NetCDF format of input and output files. In a case study covering a region (Auvergne) in the Massif Central of France, the platform is configured to characterize climate (occurrence of arid conditions in historical and projected climate records), soils and human management, and is then used to assess the vulnerability to climate change of grassland productivity (downscaled to a fine scale). We demonstrate how using climate time series, and process-based simulations vulnerabilities can be defined at fine spatial scales relevant to farmers and land managers, and can be incorporated into management frameworks. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1574-9541 ISBN Medium Article
Area Expedition Conference
Notes CropM LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4708
Permanent link to this record