toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author van Lingen, H.J.; Plugge, C.M.; Fadel, J.G.; Kebreab, E.; Bannink, A.; Dijkstra, J. url  doi
openurl 
  Title Correction: Thermodynamic Driving Force of Hydrogen on Rumen Microbial Metabolism: A Theoretical Investigation Type Miscellaneous
  Year 2016 Publication (down) PLoS One Abbreviated Journal PLoS One  
  Volume 11(12) Issue 12 Pages e0168052  
  Keywords  
  Abstract [This corrects the article DOI: 10.1371/journal.pone.0161362.].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes LiveM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5020  
Permanent link to this record
 

 
Author Bannink, A.; van Lingen, H.J.; Ellis, J.L.; France, J.; Dijkstra, J. doi  openurl
  Title The contribution of mathematical modeling to understanding dynamic aspects of rumen metabolism Type Journal Article
  Year 2016 Publication (down) Frontiers in Microbiology Abbreviated Journal Frontiers in Microbiology  
  Volume 7 Issue Pages 1820  
  Keywords lactating dairy-cows; milk urea concentration; fatty-acid production; ruminal fermentation; mechanistic model; holstein cows; beef-cattle; stoichiometric parameters; methane production; feeding frequency  
  Abstract All mechanistic rumen models cover the main drivers of variation in rumen function, which are feed intake, the differences between feedstuffs and feeds in their intrinsic rumen degradation characteristics, and fractional outflow rate of fluid and particulate matter. Dynamic modeling approaches are best suited to the prediction of more nuanced responses in rumen metabolism, and represent the dynamics of the interactions between substrates and micro-organisms and inter-microbial interactions. The concepts of dynamics are discussed for the case of rumen starch digestion as influenced by starch intake rate and frequency of feed intake, and for the case of fermentation of fiber in the large intestine. Adding representations of new functional classes of micro-organisms (i.e., with new characteristics from the perspective of whole rumen function) in rumen models only delivers new insights if complemented by the dynamics of their interactions with other functional classes. Rumen fermentation conditions have to be represented due to their profound impact on the dynamics of substrate degradation and microbial metabolism. Although the importance of rumen pH is generally acknowledged, more emphasis is needed on predicting its variation as well as variation in the processes that underlie rumen fluid dynamics. The rumen wall has an important role in adapting to rapid changes in the rumen environment, clearing of volatile fatty acids (VFA), and maintaining rumen pH within limits. Dynamics of rumen wall epithelia and their role in VFA absorption needs to be better represented in models that aim to predict rumen responses across nutritional or physiological states. For a detailed prediction of rumen N balance there is merit in a dynamic modeling approach compared to the static approaches adopted in current protein evaluation systems. Improvement is needed on previous attempts to predict rumen VFA profiles, and this should be pursued by introducing factors that relate more to microbial metabolism. For rumen model construction, data on rumen microbiomes are preferably coupled with knowledge consolidated in rumen models instead of relying on correlations with rather general aspects of treatment or animal. This helps to prevent the disregard of basic principles and underlying mechanisms of whole rumen function.  
  Address 2017-01-06  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-302x ISBN Medium  
  Area Expedition Conference  
  Notes LiveM, ft_MACSUR Approved no  
  Call Number MA @ admin @ Serial 4932  
Permanent link to this record
 

 
Author Kipling, R.; Scollan, N.; Bannink, A.; van Middelkoop, J. url  openurl
  Title From diversity to strategy: Livestock research for effective policy in a climate change world Type Report
  Year 2016 Publication (down) FACCE MACSUR Reports Abbreviated Journal  
  Volume 8 Issue Pages H0.3-D1  
  Keywords policy brief, networking  
  Abstract European livestock agriculture is extraordinarily diverse, and so are the challenges it faces. This diversity has contributed to the development of a fragmented set of research communities. As a result, livestock research is often under-represented at policy level, despite its high relevance for the environment and food security.  Understanding livestock systems and how they can sustainably adapt to global change requires inputs across research areas, including grasslands, nutrition, health, welfare and ecology. It also requires experimental researchers, modellers and stakeholders to work closely together.  Networks and capacity building structures are vital to enable livestock research to meet the challenges of climate change. They need to maintain shared resources and provide non-competitive arenas to share and synthesize results for policy support.  ï‚· Long term strategic investment is needed to support such structures. Their leadership requires very different skills to those effective in scientific project coordination.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2269  
Permanent link to this record
 

 
Author Bannink, A. url  openurl
  Title Trade-offs of dietary N-reducing dietary measures on enteric methane emission and P excretion in lactating cows Type
  Year 2015 Publication (down) FACCE MACSUR Reports Abbreviated Journal  
  Volume 5 Issue Pages Sp5-2  
  Keywords  
  Abstract The dairy sector may expand by over 2% per annum with expiration of the milk quota system in countries with a major and intensive dairy sector. Such expansion will increase pressure to further reduce on-farm nitrogenous emission per unit of milk produced even more. A straightforward N-reducing measure is the manipulation of the cow diet resulting in a lower excretion of ammoniacal N excreted with urine in particular. However, dietary N-reducing measures also affect enteric methane emissions and P excretion. For an integral evaluation of the consequences of N-reducing dietary measures on on-farm emissions, the trade-offs between N emissions and P and methane emissions at the cow level need to be taken into account. Therefore, a simulation study was performed to simulate the consequence of various N-reducing and/or P-reducing dietary measures (altered grassland management, grass silage replaced by low-N feeds, increased concentrate allowance) on enteric methane emission and on N and P excretion. Results indicate a large scattering, but there was a trend of higher methane emissions with lower N excretion was significant. Specific measures had a synergistic effect on emissions such as the exchange of maize for grass silage. The present detailed model evaluations may aid in quantifying the extent of trade-offs between various types of emissions at the cow level, but also prove to be relevant when evaluating consequences of management options taken at the farm scale. No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2117  
Permanent link to this record
 

 
Author Köchy, M.; Aberton, M.; Bannink, A.; Banse, M.; Brouwer, F.; Brüser, K.; Ewert, F.; Foyer, C.; Jorgenson, J.S.; Kipling, R.; Meijs, J.; Rötter, R.; Scollan, N.; Sinabell, F.; Tiffin, R.; van den Pol-van Dasselaar, A. url  openurl
  Title MACSUR — Summary of research results, phase 1: 2012-2015 Type Report
  Year 2015 Publication (down) FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-H3.3  
  Keywords Hub  
  Abstract MACSUR — Modelling European Agriculture with Climate Change for Food Security — is a  knowledge hub that was formally created in June 2012 as a European scientific network.  The strategic aim of the knowledge hub is to create a coordinated and globally visible  network of European researchers and research groups, with intra- and interdisciplinary  interaction and shared expertise creating synergies for the development of scientific  resources (data, models, methods) to model the impacts of climate change on agriculture  and related issues. This objective encompasses a wide range of political and sociological  aspects, as well as the technical development of modelling capacity through impact  assessments at different scales and assessing uncertainties in model outcomes. We achieve  this through model intercomparisons and model improvements, harmonization and  exchange of data sets, training in the selection and use of models, assessment of benefits  of ensemble modelling, and cross-disciplinary linkages of models and tools. The project  engages with a diverse range of stakeholder groups and to support the development of  resources for capacity building of individuals and countries. Commensurate with this broad  challenge, a network of currently 300 scientists (measured by the number of individuals on  the central e-mail list) from 18 countries evolved from the original set of research groups  selected by FACCE.   In the spirit of creating and maintaining a network for intra- and interdisciplinary  knowledge exchange, network activities focused on meetings of researchers for sharing  expertise and, depending on group resources (both financial and personnel), development  of collaborative research activities. The outcome of these activities is the enhanced  knowledge of the individual researchers within the network, contributions to conference  presentations and scholarly papers, input to stakeholders and the general public, organised  courses for students, junior and senior scientists. The most visible outcome are the  scientific results of the network activities, represented in the contributions of MACSUR  members to the impressive number of more than 200 collaborative papers in peer-reviewed  publications.   Here, we present a selection of overview and cross-disciplinary papers which include  contributions from MACSUR members. It highlights the major scientific challenges  addressed, and the methodological solutions and insights obtained. Over and above these  highlights, major achievements have been reached regarding data collection, data  processing, evaluation, model testing, modelling assessments of the effects of agriculture  on ecosystem services, policy, and development of scenarios. Details on these  achievements in the context of MACSUR can be found in our online publication FACCE  MACSUR Reports at http://ojs.macsur.eu.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2086  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: