toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Angulo, C.; Gaiser, T.; Rötter, R.P.; Børgesen, C.D.; Hlavinka, P.; Trnka, M.; Ewert, F. url  doi
openurl 
  Title ‘Fingerprints’ of four crop models as affected by soil input data aggregation Type Journal Article
  Year 2014 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 61 Issue Pages 35-48  
  Keywords crop model; soil data; spatial resolution; yield distribution; aggregation; us great-plains; climate-change; integrated assessment; simulating wheat; yields; scale; productivity; uncertainty; variability; responses  
  Abstract • Systematic analysis of the influence of spatial soil data resolution on simulated regional yields and total growing season evapotranspiration. • The responses of four crop models of different complexity are compared. • Differences between models are larger than the effect of the chosen spatial soil data resolution. • Low influence of soil data resolution due to: high precipitation amount, methods for calculating water retention and method of data aggregation. The spatial variability of soil properties is an important driver of yield variability at both field and regional scale. Thus, when using crop growth simulation models, the choice of spatial resolution of soil input data might be key in order to accurately reproduce observed yield variability. In this study we used four crop models (SIMPLACE<LINTUL-SLIM>, DSSAT-CSM, EPIC and DAISY) differing in the detail of modeling above-ground biomass and yield as well as of modeling soil water dynamics, water uptake and drought effects on plants to simulate winter wheat in two (agro-climatologically and geo-morphologically) contrasting regions of the federal state of North-Rhine-Westphalia (Germany) for the period from 1995 to 2008. Three spatial resolutions of soil input data were taken into consideration, corresponding to the following map scales: 1:50 000, 1:300 000 and 1:1 000 000. The four crop models were run for water-limited production conditions and model results were evaluated in the form of frequency distributions, depicted by bean-plots. In both regions, soil data aggregation had very small influence on the shape and range of frequency distributions of simulated yield and simulated total growing season evapotranspiration for all models. Further analysis revealed that the small influence of spatial resolution of soil input data might be related to: (a) the high precipitation amount in the region which partly masked differences in soil characteristics for water holding capacity, (b) the loss of variability in hydraulic soil properties due to the methods applied to calculate water retention properties of the used soil profiles, and (c) the method of soil data aggregation. No characteristic “fingerprint” between sites, years and resolutions could be found for any of the models. Our results support earlier recommendation to evaluate model results on the basis of frequency distributions since these offer quick and better insight into the distribution of simulation results as compared to summary statistics only. Finally, our results support conclusions from other studies about the usefulness of considering a multi-model approach to quantify the uncertainty in simulated yields introduced by the crop growth simulation approach when exploring the effects of scaling for regional yield impact assessments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4511  
Permanent link to this record
 

 
Author (up) Elsgaard, L.; Børgesen, C.D.; Olesen, J.E.; Siebert, S.; Ewert, F.; Peltonen-Sainio, P.; Rötter, R.P.; Skjelvåg, A.O. doi  openurl
  Title Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe Type Journal Article
  Year 2012 Publication Food Additives & Contaminants: Part A Abbreviated Journal Food Addit. Contam. Part A  
  Volume 29 Issue 10 Pages 1514-1526  
  Keywords Agriculture/*economics/trends; Animals; Avena/chemistry/economics/*growth & development/microbiology; *Climate Change/economics; Crops, Agricultural/chemistry/economics/*growth & development/microbiology; Europe; *Food Safety; Forecasting/methods; Fungi/growth & development/metabolism; Humans; Models, Biological; Models, Economic; Mycotoxins/analysis/biosynthesis; Soil Pollutants/adverse effects/analysis; Spatio-Temporal Analysis; Triticum/chemistry/economics/*growth & development/microbiology; Uncertainty; Weather; Zea mays/chemistry/economics/*growth & development/microbiology  
  Abstract Climate change is anticipated to affect European agriculture, including the risk of emerging or re-emerging feed and food hazards. Indirectly, climate change may influence such hazards (e.g. the occurrence of mycotoxins) due to geographic shifts in the distribution of major cereal cropping systems and the consequences this may have for crop rotations. This paper analyses the impact of climate on cropping shares of maize, oat and wheat on a 50-km square grid across Europe (45-65°N) and provides model-based estimates of the changes in cropping shares in response to changes in temperature and precipitation as projected for the time period around 2040 by two regional climate models (RCM) with a moderate and a strong climate change signal, respectively. The projected cropping shares are based on the output from the two RCMs and on algorithms derived for the relation between meteorological data and observed cropping shares of maize, oat and wheat. The observed cropping shares show a south-to-north gradient, where maize had its maximum at 45-55°N, oat had its maximum at 55-65°N, and wheat was more evenly distributed along the latitudes in Europe. Under the projected climate changes, there was a general increase in maize cropping shares, whereas for oat no areas showed distinct increases. For wheat, the projected changes indicated a tendency towards higher cropping shares in the northern parts and lower cropping shares in the southern parts of the study area. The present modelling approach represents a simplification of factors determining the distribution of cereal crops, and also some uncertainties in the data basis were apparent. A promising way of future model improvement could be through a systematic analysis and inclusion of other variables, such as key soil properties and socio-economic conditions, influencing the comparative advantages of specific crops.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-0049 1944-0057 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4585  
Permanent link to this record
 

 
Author (up) Olesen, J.E.; Børgesen, C.D.; Elsgaard, L.; Palosuo, T.; Rötter, R.P.; Skjelvåg, A.O.; Peltonen-Sainio, P.; Börjesson, T.; Trnka, M.; Ewert, F.; Siebert, S.; Brisson, N.; Eitzinger, J.; van Asselt, E.D.; Oberforster, M.; van der Fels-Klerx, H.J. doi  openurl
  Title Changes in time of sowing, flowering and maturity of cereals in Europe under climate change Type Journal Article
  Year 2012 Publication Food Additives & Contaminants: Part A Abbreviated Journal Food Addit. Contam. Part A  
  Volume 29 Issue 10 Pages 1527-1542  
  Keywords Agriculture/*methods/trends; Avena/growth & development; *Climate Change; Crops, Agricultural/*growth & development; Edible Grain/*growth & development; Europe; Flowering Tops/growth & development; Forecasting/methods; Germination; Humans; Models, Biological; Models, Statistical; Seasons; Seeds/growth & development; Spatio-Temporal Analysis; Triticum/growth & development; Zea mays/growth & development  
  Abstract The phenological development of cereal crops from emergence through flowering to maturity is largely controlled by temperature, but also affected by day length and potential physiological stresses. Responses may vary between species and varieties. Climate change will affect the timing of cereal crop development, but exact changes will also depend on changes in varieties as affected by plant breeding and variety choices. This study aimed to assess changes in timing of major phenological stages of cereal crops in Northern and Central Europe under climate change. Records on dates of sowing, flowering, and maturity of wheat, oats and maize were collected from field experiments conducted during the period 1985-2009. Data for spring wheat and spring oats covered latitudes from 46 to 64°N, winter wheat from 46 to 61°N, and maize from 47 to 58°N. The number of observations (site-year-variety combinations) varied with phenological phase, but exceeded 2190, 227, 2076 and 1506 for winter wheat, spring wheat, spring oats and maize, respectively. The data were used to fit simple crop development models, assuming that the duration of the period until flowering depends on temperature and day length for wheat and oats, and on temperature for maize, and that the duration of the period from flowering to maturity in all species depends on temperature only. Species-specific base temperatures were used. Sowing date of spring cereals was estimated using a threshold temperature for the mean air temperature during 10 days prior to sowing. The mean estimated temperature thresholds for sowing were 6.1, 7.1 and 10.1°C for oats, wheat and maize, respectively. For spring oats and wheat the temperature threshold increased with latitude. The effective temperature sums required for both flowering and maturity increased with increasing mean annual temperature of the location, indicating that varieties are well adapted to given conditions. The responses of wheat and oats were largest for the period from flowering to maturity. Changes in timing of cereal phenology by 2040 were assessed for two climate model projections according to the observed dependencies on temperature and day length. The results showed advancements of sowing date of spring cereals by 1-3 weeks depending on climate model and region within Europe. The changes were largest in Northern Europe. Timing of flowering and maturity were projected to advance by 1-3 weeks. The changes were largest for grain maize and smallest for winter wheat, and they were generally largest in the western and northern part of the domain. There were considerable differences in predicted timing of sowing, flowering and maturity between the two climate model projections applied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1944-0049 1944-0057 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4590  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: