|   | 
Details
   web
Records
Author Sándor, R.; Barcza, Z.; Acutis, M.; Doro, L.; Hidy, D.; Köchy, M.; Minet, J.; Lellei-Kovács, E.; Ma, S.; Perego, A.; Rolinski, S.; Ruget, F.; Sanna, M.; Seddaiu, G.; Wu, L.; Bellocchi, G.
Title Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble performance Type Journal Article
Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume Issue Pages
Keywords Biomass; Grasslands; Modelling; Multi-model ensemble; Soil processes
Abstract • We simulate biomass, soil water content (SWC) and temperature (ST) in grasslands. • We compare nine models to the multi-model median (MMM) at nine sites. • With model calibration, we obtain satisfactory estimates of ST, less of SWC and biomass. • We observe discrepancies across models in the simulation of grassland processes. • We improve performance with multi-model approach. This study presents results from a major grassland model intercomparison exercise, and highlights the main challenges faced in the implementation of a multi-model ensemble prediction system in grasslands. Nine, independently developed simulation models linking climate, soil, vegetation and management to grassland biogeochemical cycles and production were compared in a simulation of soil water content (SWC) and soil temperature (ST) in the topsoil, and of biomass production. The results were assessed against SWC and ST data from five observational grassland sites representing a range of conditions – Grillenburg in Germany, Laqueuille in France with both extensive and intensive management, Monte Bondone in Italy and Oensingen in Switzerland – and against yield measurements from the same sites and other experimental grassland sites in Europe and Israel. We present a comparison of model estimates from individual models to the multi-model ensemble (represented by multi-model median: MMM). With calibration (seven out of nine models), the performances were acceptable for weekly-aggregated ST (R² > 0.7 with individual models and >0.8–0.9 with MMM), but less satisfactory with SWC (R² < 0.6 with individual models and < ∼ 0.5 with MMM) and biomass (R² < ∼0.3 with both individual models and MMM). With individual models, maximum biases of about −5 °C for ST, −0.3 m3 m−3 for SWC and 360 g DM m−2 for yield, as well as negative modelling efficiencies and some high relative root mean square errors indicate low model performance, especially for biomass. We also found substantial discrepancies across different models, indicating considerable uncertainties regarding the simulation of grassland processes. The multi-model approach allowed for improved performance, but further progress is strongly needed in the way models represent processes in managed grassland systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium
Area LiveM Expedition Conference
Notes Approved no
Call Number (up) MA @ admin @ Serial 4768
Permanent link to this record
 

 
Author Acutis, M.; Bellocchi, G.
Title Briefing on CropM-LiveM model intercomparison protocol Type Conference Article
Year 2013 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference JPI FACCE MACSUR CropM and LiveM cross-cutting activity Helsinki, Finland, 2013-05-06 to 2013-05-06
Notes Approved no
Call Number (up) MA @ admin @ Serial 2272
Permanent link to this record
 

 
Author Bellocchi, G.; Rivington, M.; Acutis, M.
Title Protocol for model evaluation Type Report
Year 2014 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 3 Issue Pages D-L2.2/D
Keywords
Abstract This deliverable focuses on the development of methods for model evaluation in order to have unambiguous indications derived from the use of several evaluation metrics. The information about model quality is aggregated into a single indicator using a fuzzy expert system that can be applied to a wide range of model estimates where suitable test data are available. This is a cross-cutting activity between CropM (C1.4) and LiveM (L2.2). No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) MA @ admin @ Serial 2229
Permanent link to this record
 

 
Author Sanna, M.; Acutis, M.; Bellocchi, G.
Title Interrelationship between evaluation metrics to assess agro-ecological models Type Report
Year 2014 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 3 Issue Pages Sp3-5
Keywords
Abstract When evaluating the performances of simulation models, the perception of the quality of the outputs may depend on the statistics used to compare simulated and observed data. In order to have a comprehensive understanding of model performance, the use of a variety of metrics is generally advocated. However, since they may be correlated, the use of two or more metrics may convey the same information, leading to redundancy. This study intends to investigate the interrelationship between evaluation metrics, with the aim of identifying the most useful set of indicators, for assessing simulation performance. Our focus is on agro-ecological modelling. Twenty-three performance indicators were selected to compare simulated and observed data of four agronomic and meteorological variables: above-ground biomass, leaf area index, hourly air relative humidity and daily solar radiation. Indicators were calculated on large data sets, collected to effectively apply correlation analysis techniques. For each variable, the interrelationship between each pair of indicators was evaluated, by computing the Spearman’s rank correlation coefficient. A definition of “stable correlation” was proposed, based on the test of heterogeneity, allowing to assess whether two or more correlation coefficients are equal. An optimal subset of indicators was identified, striking a balance between number of indicators, amount of provided information and information redundancy. They are: Index of Agreement, Squared Bias, Root Mean Squared Relative Error, Pattern Index, Persistence Model Efficiency and Spearman’s Correlation Coefficient. The present study was carried out in the context of CropM-LiveM cross-cutting activities of MACSUR knowledge hub. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) MA @ admin @ Serial 2222
Permanent link to this record
 

 
Author Pirttioja, N.; Carter, T.R.; Fronzek, S.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.F.; Dumont, B.; Ewert, F.; Ferrise, R.; François, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.C.; Kollas, C.; Krzyszczak, J.; Lorite, I.J.; Minet, J.; Minguez, M.I.; Montesino-San Martin, M.; Moriondo, M.; Müller, C.; Nendel, C.; Öztürk, I.; Perego, A.; Rodríguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rötter, R.P.
Title Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces Type Journal Article
Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 65 Issue Pages 87-105
Keywords climate; crop model; impact response surface; IRS; sensitivity analysis; wheat; yield; climate-change impacts; uncertainty; 21st-century; projections; simulation; growth; region
Abstract This study explored the utility of the impact response surface (IRS) approach for investigating model ensemble crop yield responses under a large range of changes in climate. IRSs of spring and winter wheat Triticum aestivum yields were constructed from a 26-member ensemble of process-based crop simulation models for sites in Finland, Germany and Spain across a latitudinal transect. The sensitivity of modelled yield to systematic increments of changes in temperature (-2 to +9°C) and precipitation (-50 to +50%) was tested by modifying values of baseline (1981 to 2010) daily weather, with CO2 concentration fixed at 360 ppm. The IRS approach offers an effective method of portraying model behaviour under changing climate as well as advantages for analysing, comparing and presenting results from multi-model ensemble simulations. Though individual model behaviour occasionally departed markedly from the average, ensemble median responses across sites and crop varieties indicated that yields decline with higher temperatures and decreased precipitation and increase with higher precipitation. Across the uncertainty ranges defined for the IRSs, yields were more sensitive to temperature than precipitation changes at the Finnish site while sensitivities were mixed at the German and Spanish sites. Precipitation effects diminished under higher temperature changes. While the bivariate and multi-model characteristics of the analysis impose some limits to interpretation, the IRS approach nonetheless provides additional insights into sensitivities to inter-model and inter-annual variability. Taken together, these sensitivities may help to pinpoint processes such as heat stress, vernalisation or drought effects requiring refinement in future model development.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577x 1616-1572 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number (up) MA @ admin @ Serial 4662
Permanent link to this record