|   | 
Details
   web
Records
Author Lana, M.; Kersebaum, K.C.; Kollas, C.; Yin, X.; Nendel, C.; Manevski, K.; Müller, C.; Palosuo, T.; Armas-Herrera, C.M.; Beaudoin, N.; Bindi, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Eitzinger, J.; Ewert, F.; Ferrise, R.; Gaiser, T.; Cortazar-Atauri, I.G.D.; Giglio, L.; Hlavinka, P.; Hoffmann, H.; Hoffmann, M.P.; Launay, M.; Manderscheid, R.; Mary, B.; Mirschel, W.; Moriondo, M.; Olesen, J.E.; Öztürk, I.; Pacholski, A.; Ripoche-Wachter, D.; Roggero, P.P.; Roncossek, S.; Rötter, R.P.; Ruget, F.; Sharif, B.; Trnka, M.; Ventrella, D.; Waha, K.; Wegehenkel, M.; Weigel, H.-J.; Wu, L.
Title Effect of different levels of calibration in rotation schemes simulated in five European sites in a multi-model approach Type Conference Article
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address (up)
Corporate Author Thesis
Publisher Place of Publication Berlin (Germany) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium poster
Area Expedition Conference International Crop Modelling Symposium iCROPM 2016, 2016-05-15 to 2016-05-17, Berlin, Germany
Notes Approved no
Call Number MA @ admin @ Serial 4917
Permanent link to this record
 

 
Author Fronzek, S.; Pirttioja, N.; Carter, T.R.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.-F.; Dumont, B.; Ewert, F.; Ferrise, R.; François, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.C.; Kollas, C.; Krzyszczak, J.; Lorite, I.J.; Minet, J.; Minguez, M.I.; Montesino, M.; Moriondo, M.; Müller, C.; Nendel, C.; Öztürk, I.; Perego, A.; Rodríguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rötter, R.P.
Title Classifying simulated wheat yield responses to changes in temperature and precipitation across a European transect Type Conference Article
Year 2016 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address (up)
Corporate Author Thesis
Publisher Place of Publication Berlin (Germany) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International Crop Modelling Symposium iCROPM 2016, 2016-05-15 to 2016-05-17, Berlin, Germany
Notes Approved no
Call Number MA @ admin @ Serial 4921
Permanent link to this record
 

 
Author Fronzek, S.; Pirttioja, N.; Carter, T.R.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.-F.; Dumont, B.; Ewert, F.; Ferrise, R.; François, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.-C.; Kollas, C.; Krzyszczak, J.; Lorite, I.J.; Minet, J.; Minguez, M.I.; Montesino, M.; Moriondo, M.; Müller, C.; Nendel, C.; Öztürk, I.; Perego, A.; Rodríguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinsky, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rötter, R.P.
Title Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change Type Report
Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 10 Issue Pages C4.3-D1
Keywords
Abstract Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (−2 to +9°C) and precipitation (−50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses.   The model ensemble was used to simulate yields of winter and spring wheat at sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern.   The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes, Figure 1) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description.   Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index.   Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.   The full manuscript of this study is currently under revision (Fronzek et al. 2017).
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4956
Permanent link to this record
 

 
Author Hlavinka, P.; Olesen, J.E.; Kersebaum, K.-C.; Trnka, M.; Pohankova, E.; Stella, T.; Ferrise, R.; Moriondo, M.; Hoogenbom, G.; Shelia, V.; Nendel, C.; Wimmerová, M.; Topaj, A.; Medvedev, S.; Ventrella, D.; Ruiz-Ramos, M.; Rodríguez Sánchez, A.; Takáč, J.; Patil, R.H.; Öztürk, I.; Hoffmann, M.; Gobin, A.; Rötter, R.P.
Title Modelling long term effects of cropping and managements systems on soil organic matter, C/N dynamics and crop growth Type Report
Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 10 Issue Pages C1.3-D
Keywords
Abstract While simulation of cropping systems over a few years might reflect well the short term effects of management and cultivation, long term effects on soil properties and their consequences for crop growth and matter fluxes are not captured. Especially the effect on soil carbon sequestration/depletion is addressed by this task. Simulations of an ensemble of crop models are performed as transient runs over a period of 120 year using observed weather from three stations in Czech Republic (1961-2010) and transient long time climate change scenarios (2011-2080) from five GCM of the CMIP5 ensemble to assess the effect of different cropping and management systems on carbon sequestration, matter fluxes and crop production in an integrative way. Two cropping systems are regarded comprising two times winter wheat, silage maize, spring barley and oilseed rape. Crop rotations differ regarding their organic input from crop residues, nitrogen fertilization and implementation of catch crops. Models are applied for two soil types with different water holding capacity. Cultivation and nutrient management is adapted using management rules related to weather and soil conditions. Data of phenology and crop yield from the region of the regarded crops were provided to calibrate the models for crops of the rotations. Twelve models were calibrated in this first step. For the transient long term runs results of four models were submitted so far. Outputs are crop yields, nitrogen uptake, soil water and mineral nitrogen contents, as well as water and nitrogen fluxes to the atmosphere and groundwater. Changes in the carbon stocks and the consequences for nitrogen mineralisation, N fertilization and emissions also considered.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes XC Approved no
Call Number MA @ admin @ Serial 4976
Permanent link to this record
 

 
Author Yin, X.G.; Olesen, J.E.; Wang, M.; Öztürk, I.; Chen, F.
Title Climate effects on crop yields in the Northeast Farming Region of China during 1961–2010 Type Journal Article
Year 2016 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.
Volume 154 Issue 07 Pages 1190-1208
Keywords
Abstract Crop production in the Northeast Farming Region of China (NFR) is affected considerably by variation in climatic conditions. Data on crop yield and weather conditions from a number of agro-meteorological stations in NFR were used in a mixed linear model to evaluate the impacts of climatic variables on the yield of maize (Zea mays L.), rice (Oryza sativa L.), soybean (Glycine max L. Merr.) and spring wheat (Triticum aestivum L.) in different crop growth phases. The crop growing season was divided into three growth phases based on the average crop phenological dates from records covering 1981 and 2010 at each station, comprising pre-flowering (from sowing to just prior to flowering), flowering (20 days around flowering) and post-flowering (10 days after flowering to maturity). The climatic variables were mean minimum temperature, thermal time (which is used to indicate changes in the length of growth cycles), average daily solar radiation, accumulated precipitation, aridity index (which is used to assess drought stress) and heat degree-days index (HDD) (which is used to indicate heat stress) were calculated for each growth phase and year. Over the 1961–2010 period, the minimum temperature increased significantly in each crop growth phase, the thermal time increased significantly in the pre-flowering phase of each crop and in the post-flowering phases of maize, rice and soybean, and HDD increased significantly in the pre-flowering phase of soybean and wheat. Average solar radiation decreased significantly in the pre-flowering phase of all four crops and in the flowering phase of soybean and wheat. Precipitation increased during the pre-flowering phase leading to less aridity, whereas reduced precipitation in the flowering and post-flowering phases enhanced aridity. Statistical analyses indicated that higher minimum temperature was beneficial for maize, rice and soybean yields, whereas increased temperature reduced wheat yield. Higher solar radiation in the pre-flowering phase was beneficial for maize yield, in the post-flowering phase for wheat yield, whereas higher solar radiation in the flowering phase reduced rice yield. Increased aridity in the pre-flowering and flowering phases severely reduced maize yield, higher aridity in the flowering and post-flowering phases reduced rice yield, and aridity in all growth phases reduced soybean and wheat yields. Higher HDD in all growth phases reduced maize and soybean yield and HDD in the pre-flowering phase reduced rice yield. Such effects suggest that projected future climate change may have marked effects on crop yield through effects of several climatic variables, calling for adaptation measures such as breeding and changes in crop, soil and agricultural water management.
Address (up) 2016-09-30
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8596 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4782
Permanent link to this record