toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sandor, R.; Ehrhardt, F.; Grace, P.; Recous, S.; Smith, P.; Snow, V.; Soussana, J.-F.; Basso, B.; Bhatia, A.; Brilli, L.; Doltra, J.; Dorich, C.D.; Doro, L.; Fitton, N.; Grant, B.; Harrison, M.T.; Kirschbaum, M.U.F.; Klumpp, K.; Laville, P.; Leonard, J.; Martin, R.; Massad, R.-S.; Moore, A.; Myrgiotis, V.; Pattey, E.; Rolinski, S.; Sharp, J.; Skiba, U.; Smith, W.; Wu, L.; Zhang, Q.; Bellocchi, G. doi  openurl
  Title Ensemble modelling of carbon fluxes in grasslands and croplands Type Journal Article
  Year 2020 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 252 Issue Pages 107791  
  Keywords C fluxes; croplands; grasslands; multi-model ensemble; multi-model; median (mmm); soil organic-carbon; greenhouse-gas emissions; climate-change impacts; crop model; data aggregation; use efficiency; n2o emissions; maize; yield; wheat; productivity  
  Abstract Croplands and grasslands are agricultural systems that contribute to land–atmosphere exchanges of carbon (C). We evaluated and compared gross primary production (GPP), ecosystem respiration (RECO), net ecosystem exchange (NEE) of CO2, and two derived outputs – C use efficiency (CUE=-NEE/GPP) and C emission intensity (IntC= -NEE/Offtake [grazed or harvested biomass]). The outputs came from 23 models (11 crop-specific, eight grassland-specific, and four models covering both systems) at three cropping sites over several rotations with spring and winter cereals, soybean and rapeseed in Canada, France and India, and two temperate permanent grasslands in France and the United Kingdom. The models were run independently over multi-year simulation periods in five stages (S), either blind with no calibration and initialization data (S1), using historical management and climate for initialization (S2), calibrated against plant data (S3), plant and soil data together (S4), or with the addition of C and N fluxes (S5). Here, we provide a framework to address methodological uncertainties and contextualize results. Most of the models overestimated or underestimated the C fluxes observed during the growing seasons (or the whole years for grasslands), with substantial differences between models. For each simulated variable, changes in the multi-model median (MMM) from S1 to S5 was used as a descriptor of the ensemble performance. Overall, the greatest improvements (MMM approaching the mean of observations) were achieved at S3 or higher calibration stages. For instance, grassland GPP MMM was equal to 1632 g C m−2 yr-1 (S5) while the observed mean was equal to 1763 m-2 yr-1 (average for two sites). Nash-Sutcliffe modelling efficiency coefficients indicated that MMM outperformed individual models in 92.3 % of cases. Our study suggests a cautious use of large-scale, multi-model ensembles to estimate C fluxes in agricultural sites if some site-specific plant and soil observations are available for model calibration. The further development of crop/grassland ensemble modelling will hinge upon the interpretation of results in light of the way models represent the processes underlying C fluxes in complex agricultural systems (grassland and crop rotations including fallow periods).  
  Address 2020-06-08  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 5230  
Permanent link to this record
 

 
Author Yin, X.; Kersebaum, K.-C.; Beaudoin, N.; Constantin, J.; Chen, F.; Louarn, G.; Manevski, K.; Hoffmann, M.; Kollas, C.; Armas-Herrera, C.M.; Baby, S.; Bindi, M.; Dibari, C.; Ferchaud, F.; Ferrise, R.; de Cortazar-Atauri, I.G.; Launay, M.; Mary, B.; Moriondo, M.; Öztürk, I.; Ruget, F.; Sharif, B.; Wachter-Ripoche, D.; Olesen, J.E. url  doi
openurl 
  Title Uncertainties in simulating N uptake, net N mineralization, soil mineral N and N leaching in European crop rotations using process-based models Type Journal Article
  Year 2020 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume Issue Pages 107863  
  Keywords multi-model ensemble; crop rotations; catch crops; N cycling; N export  
  Abstract Modelling N transformations within cropping systems is crucial for N management optimization in order to increase N use efficiency and reduce N losses. Such modelling remains challenging because of the complexity of N cycling in soil–plant systems. In the current study, the uncertainties of six widely used process-based models (PBMs), including APSIM, CROPSYST, DAISY, FASSET, HERMES and STICS, were tested in simulating different N managements (catch crops (CC) and different N fertilizer rates) in 12-year rotations in Western Europe. Winter wheat, sugar beet and pea were the main crops, and radish was the main CC in the tested systems. Our results showed that PBMs simulated yield, aboveground biomass, N export and N uptake well with low RMSE values, except for sugar beet, which was generally less well parameterized. Moreover, PBMs provided more accurate crop simulations (i.e. N export and N uptake) compared to simulations of soil (N mineralization and soil mineral N (SMN)) and environmental variables (N leaching). The use of multi-model ensemble mean or median of four PBMs significantly reduced the mean absolute percentage error (MAPE) between simulations and observations to less than 15% for yield, aboveground biomass, N export and N uptake. Multi-model ensemble also significantly reduced the MAPE for net N mineralization and annual N leaching to around 15%, while it was larger than 20% for SMN. Generally, PBMs well simulated the CC effects on N fluxes, i.e. increasing N mineralization and reducing N leaching in both short-term and long-term, and all PBMs correctly predicted the effects of the reduced N rate on all measured variables in the study. The uncertainties of multi-model ensemble for N mineralization, SMN and N leaching were larger, mainly because these variables are influenced by plant-soil interactions and subject to cumulative long-term effects in crop rotations, which makes them more difficult to simulate. Large differences existed between individual PBMs due to the differences in formalisms for describing N processes in soil–plant systems, the skills of modelers and the model calibration level. In addition, the model performance also depended on the simulated variables, for instance, HERMES and FASSET performed better for yield and crop biomass, APSIM, DAISY and STICS performed better for N export and N uptake, STICS provided best simulation for SMN and N leaching among the six individual PBMs in the study, but all PBMs met difficulties to well predict either average or variance of soil N mineralization. Our results showed that better calibration for soil N variables is needed to improve model predictions of N cycling in order to optimize N management in crop rotations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium article  
  Area CropM Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5235  
Permanent link to this record
 

 
Author Raymundo, R.; Asseng, S.; Prassad, R.; Kleinwechter, U.; Concha, J.; Condori, B.; Bowen, W.; Wolf, J.; Olesen, J.E.; Dong, Q.; Zotarelli, L.; Gastelo, M.; Alva, A.; Travasso, M.; Quiroz, R.; Arora, V.; Graham, W.; Porter, C. url  doi
openurl 
  Title Performance of the SUBSTOR-potato model across contrasting growing conditions Type Journal Article
  Year 2017 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 202 Issue Pages 57-76  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4967  
Permanent link to this record
 

 
Author Webber, H.; Martre, P.; Asseng, S.; Kimball, B.; White, J.; Ottman, M.; Wall, G.W.; De Sanctis, G.; Doltra, J.; Grant, R.; Kassie, B.; Maiorano, A.; Olesen, J.E.; Ripoche, D.; Rezaei, E.E.; Semenov, M.A.; Stratonovitch, P.; Ewert, F. doi  openurl
  Title Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison Type Journal Article
  Year 2017 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 202 Issue Pages 21-35  
  Keywords Crop model comparison; Canopy temperature; Heat stress; Wheat  
  Abstract Even brief periods of high temperatures occurring around flowering and during grain filling can severely reduce grain yield in cereals. Recently, ecophysiological and crop models have begun to represent such phenomena. Most models use air temperature (Tair) in their heat stress responses despite evidence that crop canopy temperature (Tc) better explains grain yield losses. Tc can deviate significantly from Tair based on climatic factors and the crop water status. The broad objective of this study was to evaluate whether simulation of Tc improves the ability of crop models to simulate heat stress impacts on wheat under irrigated conditions. Nine process-based models, each using one of three broad approaches (empirical, EMP; energy balance assuming neutral atmospheric stability, EBN; and energy balance correcting for the atmospheric stability conditions, EBSC) to simulate Tc, simulated grain yield under a range of temperature conditions. The models varied widely in their ability to reproduce the measured Tc with the commonly used EBN models performing much worse than either EMP or EBSC. Use of Tc to account for heat stress effects did improve simulations compared to using only Tair to a relatively minor extent, but the models that additionally use Tc on various other processes as well did not have better yield simulations. Models that simulated yield well under heat stress had varying skill in simulating Tc. For example, the EBN models had very poor simulations of Tc but performed very well in simulating grain yield. These results highlight the need to more systematically understand and model heat stress events in wheat.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4824  
Permanent link to this record
 

 
Author Tao, F.; Zhang, Z.; Zhang, S.; Rötter, R.P.; Shi, W.; Xiao, D.; Liu, Y.; Wang, M.; Liu, F.; Zhang, H. url  doi
openurl 
  Title Historical data provide new insights into response and adaptation of maize production systems to climate change/variability in China Type Journal Article
  Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 185 Issue Pages 1-11  
  Keywords china; climate variability; grain yield; impact; maize; northeast china; tropical maize; wheat yields; heat-stress; crop yields; temperature; impacts; sensitivities; hybrids; trends  
  Abstract Extensive studies had been conducted to investigate the impacts of climate change on maize growth and yield in recent decades; however, the dynamics of crop husbandry in response and adaptation to climate change were not taken into account. Based on field observations spanning from 1981 to 2009 at 167 agricultural meteorological stations across China, we found that solar radiation and temperature over the observed maize growth period had decreasing trends during 1981-2009, and maize yields were positively correlated with these climate variables in major production regions. The decreasing trends in solar radiation and temperature during maize growth period were mainly ascribed to the adoption of late maturity cultivars with longer reproductive growth period (RGP). The adoption of late maturing cultivars with longer RGP contributed substantially to grain yield increase during the last three decades. The climate trends during maize growth period varied among different production areas. During 1981-2009, decreases in mean temperature, precipitation and solar radiation over maize growth period jointly reduced yield most by 13.2-17.3% in southwestern China, by contrast in northwestern China increases in mean temperature, precipitation and solar radiation jointly increased yield most by 12.9-14.4%. Our findings highlight that the adaptations of maize production system to climate change through shifts of sowing date and genotypes are underway and should be taken into accounted when evaluating climate change impacts. (C) 2015 Elsevier B.V. All rights reserved.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4816  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: