toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wallach, D.; Nissanka, S.P.; Karunaratne, A.S.; Weerakoon, W.M.W.; Thorburn, P.J.; Boote, K.J.; Jones, J.W. url  doi
openurl 
  Title Accounting for both parameter and model structure uncertainty in crop model predictions of phenology: A case study on rice Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume Issue Pages  
  Keywords (down) Uncertainty; Phenology; Parameter uncertainty; Multi-model ensemble; Generalized least squares; Rice; Crop model; APSIM; DSSAT  
  Abstract We consider predictions of the impact of climate warming on rice development times in Sri Lanka. The major emphasis is on the uncertainty of the predictions, and in particular on the estimation of mean squared error of prediction. Three contributions to mean squared error are considered. The first is parameter uncertainty that results from model calibration. To take proper account of the complex data structure, generalized least squares is used to estimate the parameters and the variance-covariance matrix of the parameter estimators. The second contribution is model structure uncertainty, which we estimate using two different models. An ANOVA analysis is used to separate the contributions of parameter and model uncertainty to mean squared error. The third contribution is model error, which is estimated using hindcasts. Mean squared error of prediction of time from emergence to maturity, for baseline +2 °C, is estimated as 108 days2, with model error contributing 86 days2, followed by model structure uncertainty which contributes 15 days2 and parameter uncertainty which contributes 7 days2. We also show how prediction uncertainty is reduced if prediction concerns development time averaged over years, or the difference in development time between baseline and warmer temperatures.  
  Address 2016-09-13  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area CropM Expedition Conference  
  Notes CropM; wos; ftnotmacsur; wsnotyet; Approved no  
  Call Number MA @ admin @ Serial 4777  
Permanent link to this record
 

 
Author Nendel, C.; Kersebaum, K.C.; Mirschel, W.; Wenkel, K.O. url  doi
openurl 
  Title Testing farm management options as climate change adaptation strategies using the MONICA model Type Journal Article
  Year 2014 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 52 Issue Pages 47-56  
  Keywords (down) simulation model; climate change; crop management; adaptation strategies; nitrogen dynamics; carbon sequestration; crop productivity; simulation-model; change impacts; land-use; agriculture; scenarios; growth; yield  
  Abstract Adaptation of agriculture to climate change will be driven at the farm level in first place. The MONICA model was employed in four different modelling exercises for demonstration and testing different management options for farmers in Germany to adjust their production system. 30-Year simulations were run for the periods 1996-2025 and 2056-2085 using future climate data generated by a statistical method on the basis of measured data from 1961 to 2000 and the A1B scenario of the IPCC (2007a). Crop rotation designs that are expected to become possible in the future due to a prolonged vegetation period and at the same time shortened cereal growth period were tested for their likely success. The model suggested that a spring barley succeeding a winter barley may be successfully grown in the second half of the century, allowing for a larger yields by intensification of the cropping cycle. Growing a winter wheat after a sugar beet may lead to future problems as late sowing makes the winter wheat grow into periods prone to drought. Irrigation is projected to considerably improve and stabilise the yields of late cereals and of shallow rooting crops (maize and pea) on sandy soils in the continental climate part of Germany, but not in the humid West. Nitrogen fertiliser management needs to be adjusted to increasing or decreasing yield expectations and for decreasing soil moisture. On soils containing sufficient amounts of Moisture and soil organic matter, enhanced mineralisation is expected to compensate for a greater N demand. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4631  
Permanent link to this record
 

 
Author Seddaiu, G.; Iocola, I.; Farina, R.; Orsini, R.; Iezzi, G.; Roggero, P.P. url  doi
openurl 
  Title Long term effects of tillage practices and N fertilization in rainfed Mediterranean cropping systems: durum wheat, sunflower and maize grain yield Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 77 Issue Pages 166-178  
  Keywords (down) No tillage; Minimum tillage; Silty-clay soil; Yield stability; Recursive partitioning analysis; Rainfed cropping systems; northern Great-Plains; clay loam soil; nitrogen-fertilization; conventional tillage; winter-wheat; growth; quality; rotation; crops; water  
  Abstract Long term investigations on the combined effects of tillage systems and other agronomic practices such as mineral N fertilization under Mediterranean conditions on durum wheat are very scanty and findings are often contradictory. Moreover, no studies are available on the long term effect of the adoption of conservation tillage on grain yield of maize and sunflower grown in rotation with durum wheat under rainfed Mediterranean conditions. This paper reports the results of a 20-years experiment on a durum wheat-sunflower (7 years) and durum wheat–maize (13 years) two-year rotation, whose main objective was to quantify the long term effects of different tillage practices (CT = conventional tillage; MT = minimum tillage; NT = no tillage) combined with different nitrogen fertilizer rates (N0, N1, N2 corresponding to 0, 45 and 90 kg N ha−1 for sunflower, and 0, 90 and 180 kg N ha−1 for wheat and maize) on grain yield, yield components and yield stability for the three crops. In addition, the influence of meteorological factors on the interannual variability of studied variables was also assessed. For durum wheat, NT did not allow substantial yield benefits leading to comparable yields with respect to CT in ten out of twenty years. For both sunflower and maize, NT under rainfed conditions was not a viable options, because of the unsuitable (i.e., too wet) soil conditions of the clayish soil at sowing. Both spring crops performed well with MT. No significant N × tillage interaction was found for the three crops. As expected, the response of durum wheat and maize grain yield to N was remarkable, while sunflower grain yield was not significantly influenced by N rate. Wheat yield was constrained by high temperatures in January during tillering and drought in April during heading. The interannual yield variability of sunflower was mainly associated to soil water deficit at flowering and air temperature during seed filling. Heavy rains during this latter phase strongly constrained sunflower grain yield. Maize grain yield was negatively affected by high temperatures in June and drought in July, this latter factor was particularly important in the fertilized maize. Considering both yield and yield stability, durum wheat and sunflower performed better under MT and N1 while maize performed better under both CT and MT and with N2 rates. The results of this long term study are suitable for supporting policies on sustainable Mediterranean rainfed cropping systems and also for cropping system modelling.  
  Address 2016-07-22  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4722  
Permanent link to this record
 

 
Author Jabloun, M.; Schelde, K.; Tao, F.; Olesen, J.E. url  doi
openurl 
  Title Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 62 Issue Pages 55-64  
  Keywords (down) nitrogen; leaching; organic farming; wheat; barley; climate-change; catch crops; nitrogen mineralization; winter-wheat; arable crop; european agriculture; farming systems; spring barley; cover crops; soil  
  Abstract The effect of variation in seasonal temperature and precipitation on soil water nitrate (NO3-N) concentration and leaching from winter and spring cereals cropping systems was investigated over three consecutive four-year crop rotation cycles from 1997 to 2008 in an organic farming crop rotation experiment in Denmark. Three experimental sites, varying in climate and soil type from coarse sand to sandy loam, were investigated. The experiment included experimental treatments with different rotations, manure rate and cover crop, and soil nitrate concentrations was monitored using suction cups. The effects of climate, soil and management were examined in a linear mixed model, and only parameters with significant effect (P < 0.05) were included in the final model. The model explained 61% and 47% of the variation in the square root transform of flow-weighted annual NO3-N concentration for winter and spring cereals, respectively, and 68% and 77% of the variation in the square root transform of annual NO3-N leaching for winter and spring cereals, respectively. Nitrate concentration and leaching were shown to be site specific and driven by climatic factors and crop management. There were significant effects on annual N concentration and NO3-N leaching of location, rotation, previous crop and crop cover during autumn and winter. The relative effects of temperature and precipitation differed between seasons and cropping systems. A sensitivity analysis revealed that the predicted N concentration and leaching increased with increases in temperature and precipitation. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4562  
Permanent link to this record
 

 
Author Kuhnert, M.; Yeluripati, J.; Smith, P.; Hoffmann, H.; van Oijen, M.; Constantin, J.; Coucheney, E.; Dechow, R.; Eckersten, H.; Gaiser, T.; Grosz, B.; Haas, E.; Kersebaum, K.-C.; Kiese, R.; Klatt, S.; Lewan, E.; Nendel, C.; Raynal, H.; Sosa, C.; Specka, X.; Teixeira, E.; Wang, E.; Weihermüller, L.; Zhao, G.; Zhao, Z.; Ogle, S.; Ewert, F. doi  openurl
  Title Impact analysis of climate data aggregation at different spatial scales on simulated net primary productivity for croplands Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 88 Issue Pages 41-52  
  Keywords (down) Net primary production; NPP; Scaling; Extreme events; Crop modelling; Climate Data; aggregation  
  Abstract For spatial crop and agro-systems modelling, there is often a discrepancy between the scale of measured driving data and the target resolution. Spatial data aggregation is often necessary, which can introduce additional uncertainty into the simulation results. Previous studies have shown that climate data aggregation has little effect on simulation of phenological stages, but effects on net primary production (NPP) might still be expected through changing the length of the growing season and the period of grain filling. This study investigates the impact of spatial climate data aggregation on NPP simulation results, applying eleven different models for the same study region (∼34,000 km2), situated in Western Germany. To isolate effects of climate, soil data and management were assumed to be constant over the entire study area and over the entire study period of 29 years. Two crops, winter wheat and silage maize, were tested as monocultures. Compared to the impact of climate data aggregation on yield, the effect on NPP is in a similar range, but is slightly lower, with only small impacts on averages over the entire simulation period and study region. Maximum differences between the five scales in the range of 1–100 km grid cells show changes of 0.4–7.8% and 0.0–4.8% for wheat and maize, respectively, whereas the simulated potential NPP averages of the models show a wide range (1.9–4.2 g C m−2 d−1 and 2.7–6.1 g C m−2 d−1for wheat and maize, respectively). The impact of the spatial aggregation was also tested for shorter time periods, to see if impacts over shorter periods attenuate over longer periods. The results show larger impacts for single years (up to 9.4% for wheat and up to 13.6% for maize). An analysis of extreme weather conditions shows an aggregation effect in vulnerability up to 12.8% and 15.5% between the different resolutions for wheat and maize, respectively. Simulations of NPP averages over larger areas (e.g. regional scale) and longer time periods (several years) are relatively insensitive to climate data.  
  Address 2016-09-13  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Newsletter July Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4775  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: