toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Toscano, P.; Genesio, L.; Crisci, A.; Vaccari, F.P.; Ferrari, E.; La Cava, P.; Porter, J.R.; Gioli, B. url  doi
openurl 
  Title Empirical modelling of regional and national durum wheat quality Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume (down) 204 Issue Pages 67-78  
  Keywords durum wheat; grain protein content; forecasting tool; modelling; gridded data; red winter-wheat; grain quality; climate-change; mediterranean conditions; interannual variability; protein-composition; co2 concentration; vapor-pressure; carbon-dioxide; crop yield  
  Abstract The production of durum wheat in the Mediterranean basin is expected to experience increased variability in yield and quality as a consequence of climate change. To assess how environmental variables and agronomic practices affect grain protein content (GPC), a novel approach based on monthly gridded input data has been implemented to develop empirical model, and validated on historical time series to assess its capability to reproduce observed spatial and inter-annual GPC variability. The model was applied in four Italian regions and at the whole national scale and proved reliable and usable for operational purposes also in a forecast ‘real-time’ mode before harvesting. Precipitable water during autumn to winter and air temperature from anthesis to harvest were extremely important influences on GPC; these and additional variables, included in a linear model, were able to account for 95% of the variability in GPC that has occurred in the last 15 years in Italy. Our results are a unique example of the use of modelling as a predictive real-time platform and are a useful tool to understand better and forecast the impacts of future climate change projections on durum wheat production and quality.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4818  
Permanent link to this record
 

 
Author Dumont, B.; Basso, B.; Leemans, V.; Bodson, B.; Destain, J.-P.; Destain, M.-F. url  doi
openurl 
  Title A comparison of within-season yield prediction algorithms based on crop model behaviour analysis Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume (down) 204 Issue Pages 10-21  
  Keywords stics crop model; climate variability; lars-wg; yield prediction; log-normal distribution; convergence in law theorem; central limit theorem; weather generator; nitrogen balances; generic model; wheat; simulation; climate; stics; variability; skewness; efficiency  
  Abstract The development of methodologies for predicting crop yield, in real-time and in response to different agro-climatic conditions, could help to improve the farm management decision process by providing an analysis of expected yields in relation to the costs of investment in particular practices. Based on the use of crop models, this paper compares the ability of two methodologies to predict wheat yield (Triticum aestivum L.), one based on stochastically generated climatic data and the other on mean climate data. It was shown that the numerical experimental yield distribution could be considered as a log-normal distribution. This function is representative of the overall model behaviour. The lack of statistical differences between the numerical realisations and the logistic curve showed in turn that the Generalised Central Limit Theorem (GCLT) was applicable to our case study. In addition, the predictions obtained using both climatic inputs were found to be similar at the inter and intra-annual time-steps, with the root mean square and normalised deviation values below an acceptable level of 10% in 90% of the climatic situations. The predictive observed lead-times were also similar for both approaches. Given (i) the mathematical formulation of crop models, (ii) the applicability of the CLT and GLTC to the climatic inputs and model outputs, respectively, and (iii) the equivalence of the predictive abilities, it could be concluded that the two methodologies were equally valid in terms of yield prediction. These observations indicated that the Convergence in Law Theorem was applicable in this case study. For purely predictive purposes, the findings favoured an algorithm based on a mean climate approach, which needed far less time (by 300-fold) to run and converge on same predictive lead time than the stochastic approach. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4647  
Permanent link to this record
 

 
Author Montesino-San Martín, M.; Olesen, J.E.; Porter, J.R. url  doi
openurl 
  Title Can crop-climate models be accurate and precise? A case study for wheat production in Denmark Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume (down) 202 Issue Pages 51-60  
  Keywords Uncertainty; Model intercomparison; Bayesian approach; Climate change; Wheat; Denmark; uncertainty analysis; simulation-models; bayesian-approach; change; impact; yields; variability; projections; scale; calibration; framework  
  Abstract Crop models, used to make projections of climate change impacts, differ greatly in structural detail. Complexity of model structure has generic effects on uncertainty and error propagation in climate change impact assessments. We applied Bayesian calibration to three distinctly different empirical and mechanistic wheat models to assess how differences in the extent of process understanding in models affects uncertainties in projected impact. Predictive power of the models was tested via both accuracy (bias) and precision (or tightness of grouping) of yield projections for extrapolated weather conditions. Yields predicted by the mechanistic model were generally more accurate than the empirical models for extrapolated conditions. This trend does not hold for all extrapolations; mechanistic and empirical models responded differently due to their sensitivities to distinct weather features. However, higher accuracy comes at the cost of precision of the mechanistic model to embrace all observations within given boundaries. The approaches showed complementarity in sensitivity to weather variables and in accuracy for different extrapolation domains. Their differences in model precision and accuracy make them suitable for generic model ensembles for near-term agricultural impact assessments of climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4572  
Permanent link to this record
 

 
Author Zhao, G.; Siebert, S.; Enders, A.; Rezaei, E.E.; Yan, C.; Ewert, F. url  doi
openurl 
  Title Demand for multi-scale weather data for regional crop modeling Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume (down) 200 Issue Pages 156-171  
  Keywords multi-scale; spatial heterogeneity; spatial resolution; crop model; climate variability; climate-change scenarios; integrated assessment; large-scale; phenological development; agricultural systems; spatial-resolution; data aggregation; european-union; winter-wheat; input data  
  Abstract A spatial resolution needs to be determined prior to using models to simulate crop yields at a regional scale, but a dilemma exists in compromising between different demands. A fine spatial resolution demands extensive computation load for input data assembly, model runs, and output analysis. A coarse spatial resolution could result in loss of spatial detail in variability. This paper studied the impact of spatial resolution, data aggregation and spatial heterogeneity of weather data on simulations of crop yields, thus providing guidelines for choosing a proper spatial resolution for simulations of crop yields at regional scale. Using a process-based crop model SIMPLACE (LINTUL2) and daily weather data at 1 km resolution we simulated a continuous rainfed winter wheat cropping system at the national scale of Germany. Then we aggregated the weather data to four resolutions from 10 to 100 km, repeated the simulation, compared them with the 1 km results, and correlated the difference with the intra-pixel heterogeneity quantified by an ensemble of four semivariogram models. Aggregation of weather data had small effects over regions with a flat terrain located in northern Germany, but large effects over southern regions with a complex topography. The spatial distribution of yield bias at different spatial resolutions was consistent with the intra-pixel spatial heterogeneity of the terrain and a log-log linear relationship between them was established. By using this relationship we demonstrated the way to optimize the model resolution to minimize both the number of simulation runs and the expected loss of spatial detail in variability due to aggregation effects. We concluded that a high spatial resolution is desired for regions with high spatial environmental heterogeneity, and vice versa. This calls for the development of multi-scale approaches in regional and global crop modeling. The obtained results require substantiation for other production situations, crops, output variables and for different crop models. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4753  
Permanent link to this record
 

 
Author Crout, N.M.J.; Craigon, J.; Cox, G.M.; Jao, Y.; Tarsitano, D.; Wood, A.T.A.; Semenov, M. url  doi
openurl 
  Title An objective approach to model reduction: Application to the Sirius wheat model Type Journal Article
  Year 2014 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume (down) 189-190 Issue 100 Pages 211-219  
  Keywords Complexity; Crop model; Evaluation; Model reduction; Parsimony; Wheat  
  Abstract An existing simulation model of wheat growth and development, Sirius, was evaluated through a systematic model reduction procedure. The model was automatically manipulated under software control to replace variables within the model structure with constants, individually and in combination. Predictions of the resultant models were compared to growth analysis observations of total biomass, grain yield, and canopy leaf area derived from 9 trials conducted in the UK and New Zealand under optimal, nitrogen limiting and drought conditions. Model performance in predicting these observations was compared in order to evaluate whether individual model variables contributed positively to the overall prediction. Of the 1 1 1 model variables considered 16 were identified as potentially redundant. Areas of the model where there was evidence of redundancy were: (a) translocation of biomass carbon to grain; (b) nitrogen physiology; (c) adjustment of air temperature for various modelled processes; (d) allowance for diurnal variation in temperature; (e) vernalisation (f) soil nitrogen mineralisation (g) soil surface evaporation. It is not suggested that these are not important processes in real crops, rather, that their representation in the model cannot be justified in the context of the analysis. The approach described is analogous to a detailed model inter-comparison although it would be better described as a model intra-comparison as it is based on the comparison of many simplified forms of the same model. The approach provides automation to increase the efficiency of the evaluation and a systematic means of increasing the rigour of the evaluation.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4788  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: