toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Holman, I.P.; Brown, C.; Janes, V.; Sandars, D. doi  openurl
  Title Can we be certain about future land use change in Europe? A multi-scenario, integrated-assessment analysis Type Journal Article
  Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 151 Issue Pages 126-135  
  Keywords Climate change, Socio-economic change, Impacts, Integrated assessment, Uncertainty; Climate-Change Impacts; Water-Based Sectors; North-West England; Socioeconomic Change; Change Vulnerability; East-Anglia; Adaptation; Policy; Uncertainties; Agriculture  
  Abstract The global land system is facing unprecedented pressures from growing human populations and climatic change. Understanding the effects these pressures may have is necessary to designing land management strategies that ensure food security, ecosystem service provision and successful climate mitigation and adaptation. However, the number of complex, interacting effects involved makes any complete understanding very difficult to achieve. Nevertheless, the recent development of integrated modelling frameworks allows for the exploration of the co-development of human and natural systems under scenarios of global change, potentially illuminating the main drivers and processes in future land system change. Here, we use one such integrated modelling framework (the CLIMSAVE Integrated Assessment Platform) to investigate the range of projected outcomes in the European land system across climatic and socio-economic scenarios for the 2050s. We find substantial consistency in locations and types of change even under the most divergent conditions, with results suggesting that climate change alone will lead to a contraction in the agricultural and forest area within Europe, particularly in southern Europe. This is partly offset by the introduction of socioeconomic changes that change both the demand for agricultural production, through changing food demand and net imports, and the efficiency of agricultural production. Simulated extensification and abandonment in the Mediterranean region is driven by future decreases in the relative profitability of the agricultural sector in southern Europe, owing to decreased productivity as a consequence of increased heat and drought stress and reduced irrigation water availability. The very low likelihood (<33% probability) that current land use proportions in many parts of Europe will remain unchanged suggests that future policy should seek to promote and support the multifunctional role of agriculture and forests in different European regions, rather than focusing on increased productivity as a route to agricultural and forestry viability.  
  Address 2017-02-23  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes LiveM, TradeM, ft_MACSUR Approved no  
  Call Number MA @ admin @ Serial 4937  
Permanent link to this record
 

 
Author Özkan Gülzari, Ş.; Åby, B.A.; Persson, T.; Höglind, M.; Mittenzwei, K. doi  openurl
  Title Combining models to estimate the impacts of future climate scenarios on feed supply, greenhouse gas emissions and economic performance on dairy farms in Norway Type Journal Article
  Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 157 Issue Pages 157-169  
  Keywords Climate change; Dairy farming; Dry matter yield; Economics; Greenhouse gas emission; Modelling  
  Abstract • This study combines crop, livestock and economic models.

• Models interaction is through use of relevant input and output variables.

• Future climate change will result in increased grass and wheat dry matter yields.

• Changes in grass, wheat and milk yields in future reduce farm emissions intensity.

• Changes in future dry matter yields and emissions lead to increased profitability.

There is a scientific consensus that the future climate change will affect grass and crop dry matter (DM) yields. Such yield changes may entail alterations to farm management practices to fulfill the feed requirements and reduce the farm greenhouse gas (GHG) emissions from dairy farms. While a large number of studies have focused on the impacts of projected climate change on a single farm output (e.g. GHG emissions or economic performance), several attempts have been made to combine bio-economic systems models with GHG accounting frameworks. In this study, we aimed to determine the physical impacts of future climate scenarios on grass and wheat DM yields, and demonstrate the effects such changes in future feed supply may have on farm GHG emissions and decision-making processes. For this purpose, we combined four models: BASGRA and CSM-CERES-Wheat models for simulating forage grass DM and wheat DM grain yields respectively; HolosNor for estimating the farm GHG emissions; and JORDMOD for calculating the impacts of changes in the climate and management on land use and farm economics. Four locations, with varying climate and soil conditions were included in the study: south-east Norway, south-west Norway, central Norway and northern Norway. Simulations were carried out for baseline (1961–1990) and future (2046–2065) climate conditions (projections based on two global climate models and the Special Report on Emissions Scenarios (SRES) A1B GHG emission scenario), and for production conditions with and without a milk quota. The GHG emissions intensities (kilogram carbon dioxide equivalent: kgCO2e emissions per kg fat and protein corrected milk: FPCM) varied between 0.8 kg and 1.23 kg CO2e (kg FPCM)− 1, with the lowest and highest emissions found in central Norway and south-east Norway, respectively. Emission intensities were generally lower under future compared to baseline conditions due mainly to higher future milk yields and to some extent to higher crop yields. The median seasonal above-ground timothy grass yield varied between 11,000 kg and 16,000 kg DM ha− 1 and was higher in all projected future climate conditions than in the baseline. The spring wheat grain DM yields simulated for the same weather conditions within each climate projection varied between 2200 kg and 6800 kg DM ha− 1. Similarly, the farm profitability as expressed by total national land rents varied between 1900 million Norwegian krone (NOK) for median yields under baseline climate conditions up to 3900 million NOK for median yield under future projected climate conditions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language phase 2 Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes CropM, LiveM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5172  
Permanent link to this record
 

 
Author Reidsma, P.; Janssen, S.; Jansen, J.; van Ittersum, M. doi  openurl
  Title On the development and use of farm models for policy impact assessment in the European Union – A review Type Journal Article
  Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 159 Issue Pages 111-125  
  Keywords  
  Abstract • Evidence use in EU Impact Assessment reports is limited. • Many scientific studies used farm models for assessment of policies in the EU. • Scientific challenges include understanding farmer decision-making and interactions. • Model codes and data should be published, including evaluation. • Stronger science-policy interaction is required. Farm models are potentially relevant tools for policy impact assessment. Governments and international organizations use impact assessment (IA) as an ex-ante policy process and procedure to evaluate impacts of policy options as part of the introduction of new policies. IA is increasingly used. This paper reviews both the use of farm models in such policy IAs in the European Commission, and the development and use of farm models for policy IA by the scientific community over the past decade. A systematic review was performed, based on 202 studies from the period 2007–2015 and results were discussed in a science-policy workshop. Based on the literature review and the workshop, this paper describes progress in the development of farm models, challenges in their use in policy processes and a research and cooperation agenda. We conclude that main issues for a research agenda include: 1) better understanding of farmer decision-making and effects of the social milieu, with increased focus on the interactions between farmers and other actors, the link to the value chain, and farm structural change; 2) thorough and consistent model evaluation and model comparison, with increased attention for model sensitivity and uncertainty, and 3) the organization of a network of farm modellers. In addition, the agenda for science-policy cooperation emphasizes the need for: 4) synthesizing research evidence into systematic reviews as an institutional element in the existing science-policy-interfaces for agricultural systems, 5) improved and timely data collection, allowing to assess heterogeneity in farm objectives, management and indicators, and 6) stronger science-policy interaction, moving from a research-driven to a user-driven approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes LiveM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5179  
Permanent link to this record
 

 
Author Yin, X.G.; Kersebaum, K.C.; Kollas, C.; Manevski, K.; Baby, S.; Beaudoin, N.; Ozturk, I.; Gaiser, T.; Wu, L.H.; Hoffmann, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Ewert, F.; de Cortazar-Atauri, I.G.; Giglio, L.; Hlavinka, P.; Hoffmann, H.; Launay, M.; Louarn, G.; Manderscheid, R.; Mary, B.; Mirschel, W.; Nende, C.; Pacholskin, A.; Palosuo, T.; Ripoche-Wachter, D.; Rotter, R.P.; Ruget, F.; Sharif, B.; Trnka, M.; Ventrella, D.; Weigel, H.J.; Olesen, J.E.; Yin, X.; Kersebaum, K.C.; Kollas, C.; Manevski, K.; Baby, S.; Beaudoin, N.; Ozturk, I.; Gaiser, T.; Wu, L.; Hoffmann, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Ewert, F.; de Cortazar-Atauri, I.G.; Giglio, L.; Hlavinka, P.; Hoffmann, H.; Launay, M.; Louarn, G.; Manderscheid, R.; Mary, B.; Mirschel, W.; Nende, C.; Pacholskin, A.; Palosuo, T.; Ripoche-Wachter, D.; Roetter, R.P.; Ruget, F.; Sharif, B.; Trnka, M.; Ventrella, D.; Weigel, H.-J.; Olesen, J.E. doi  openurl
  Title Performance of process-based models for simulation of grain N in crop rotations across Europe Type Journal Article
  Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 154 Issue Pages 63-77  
  Keywords Calibration, Crop model, Crop rotation, Grain N content, Model evaluation, Model initialization; Climate-Change; Winter-Wheat; Nitrogen-Fertilization; Agroecosystem; Models; Multimodel Ensembles; Yield Response; Use Efficiency; Soil-Moisture; Oilseed Rape; Elevated Co2  
  Abstract The accurate estimation of crop grain nitrogen (N; N in grain yield) is crucial for optimizing agricultural N management, especially in crop rotations. In the present study, 12 process-based models were applied to simulate the grain N of i) seven crops in rotations, ii) across various pedo-climatic and agro-management conditions in Europe, under both continuous simulation and single year simulation, and for iv) two calibration levels, namely minimal and detailed calibration. Generally, the results showed that the accuracy of the simulations in predicting grain N increased under detailed calibration. The models performed better in predicting the grain N of winter wheat (Triticum aestivum L.), winter barley (Hordewn vulgare L.) and spring barley (Hordeum vulgare L.) compared to spring oat (Avena saliva L.), winter rye (Secale cereale L.), pea (Piswn sativum L.) and winter oilseed rape (Brassica napus L.). These differences are linked to the intensity of parameterization with better parameterized crops showing lower prediction errors. The model performance was influenced by N fertilization and irrigation treatments, and a majority of the predictions were more accurate under low N and rainfed treatments. Moreover, the multi-model mean provided better predictions of grain N compared to any individual model. In regard to the Individual models, DAISY, FASSET, HERMES, MONICA and STICS are suitable for predicting grain N of the main crops in typical European crop rotations, which all performed well in both continuous simulation and single year simulation. Our results show that both the model initialization and the cover crop effects in crop rotations should be considered in order to achieve good performance of continuous simulation. Furthermore, the choice of either continuous simulation or single year simulation should be guided by the simulation objectives (e.g. grain yield, grain N content or N dynamics), the crop sequence (inclusion of legumes) and treatments (rate and type of N fertilizer) included in crop rotations and the model formalism.  
  Address 2017-06-12  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0308-521x ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4963  
Permanent link to this record
 

 
Author Zimmermann, A.; Webber, H.; Zhao, G.; Ewert, F.; Kros, J.; Wolf, J.; Britz, W.; de Vries, W. doi  openurl
  Title Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements Type Journal Article
  Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 157 Issue Pages 81-92  
  Keywords Integrated assessment; Crop management; Climate change; Europe; INTEGRATED ASSESSMENT; EUROPEAN AGRICULTURE; FOOD SECURITY; HEAT-STRESS; ADAPTATION; SYSTEMS; TEMPERATURE; SCENARIOS; WHEAT; PRODUCTIVITY; Vries W., 2011, ENVIRONMENTAL POLLUTION, V159, P3254  
  Abstract Impacts of climate change on European agricultural production, land use and the environment depend on its impact on crop yields. However, many impact studies assume that crop management remains unchanged in future scenarios, while farmers may adapt their sowing dates and cultivar thermal time requirements to minimize yield losses or realize yield gains. The main objective of this study was to investigate the sensitivity of climate change impacts on European crop yields, land use, production and environmental variables to adaptations in crops sowing dates and varieties’ thermal time requirements. A crop, economic and environmental model were coupled in an integrated assessment modelling approach for six important crops, for 27 countries of the European Union (EU27) to assess results of three SRES climate change scenarios to 2050. Crop yields under climate change were simulated considering three different management cases; (i) no change in crop management from baseline conditions (NoAd), (ii) adaptation of sowing date and thermal time requirements to give highest yields to 2050 (Opt) and (iii) a more conservative adaptation of sowing date and thermal time requirements (Act). Averaged across EU27, relative changes in water-limited crop yields due to climate change and increased CO2 varied between -6 and + 21% considering NoAd management, whereas impacts with Opt management varied between + 12 and + 53%, and those under Act management between 2 and + 27%. However, relative yield increases under climate change increased to + 17 and + 51% when technology progress was also considered. Importantly, the sensitivity to crop management assumptions of land use, production and environmental impacts were less pronounced than for crop yields due to the influence of corresponding market, farm resource and land allocation adjustments along the model chain acting via economic optimization of yields. We conclude that assumptions about crop sowing dates and thermal time requirements affect impact variables but to a different extent and generally decreasing for variables affected by economic drivers.  
  Address 2017-11-02  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0308-521x ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5178  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: