|   | 
Details
   web
Records
Author Dono, G.; Cortignani, R.; Doro, L.; Giraldo, L.; Ledda, L.; Pasqui, M.; Roggero, P.P.
Title Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems Type Journal Article
Year (down) 2013 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 117 Issue Pages 1-12
Keywords changed climate variability; dsp; epic; adaptation; water management; irrigation; simulating impacts; co2 concentration; crop production; productivity; maize; yield; growth; model; photosynthesis; agriculture
Abstract Short-term perspectives appear to be relevant in formulating adaptation measures to changed climate variability (CCV) as a part of the European Rural Development Policy (RDP). Indeed, short-run CCV is the variation that farmers would perceive to such an extent that a political demand would be generated for adapting support measures. This study evaluates some relevant agronomic and economic impacts of CCV as modelled in a near future time period at the catchment scale in a rural district in Sardinia (Italy). The effects of CCV are assessed in relation to the availability of irrigation water and the irrigation needs of maize. The Environmental Policy Integrated Climate (EPIC) model was used to simulate the impact of key climatic variables on the irrigation water requirements and yields of maize. A three-stage discrete stochastic programming model was then applied to simulate management and economic responses to those changes. The overall economic impact of a simulated CCV was found to be primarily caused by reduced stability in the future supply of irrigation water. Adaptations to this instability will most likely lead to a higher level of groundwater extraction and a reduction in the demand for labour. Changed climate variability will most likely reduce the income potential of small-scale farming. The most CCV-vulnerable farm typologies were identified, and the implications were discussed in relation to the development of adaptation measures within the context of the Common Agricultural Policy of European Union. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521x ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4489
Permanent link to this record
 

 
Author Rötter, R.P.; Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Bindi, M.; Ewert, F.; Ferrise, R.; Hlavinka, P.; Moriondo, M.; Nendel, C.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Takác, J.; Trnka, M.
Title Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models Type Journal Article
Year (down) 2012 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 133 Issue Pages 23-36
Keywords climate; crop growth simulation; model comparison; spring barley; yield variability; uncertainty; change impacts; nitrogen dynamics; high-temperature; soil-moisture; elevated co2; ceres-wheat; data set; growth; drought; sensitivity
Abstract In this study, the performance of nine widely used and accessible crop growth simulation models (APES-ACE, CROPSYST, DAISY, DSSAT-CERES, FASSET, HERMES, MONICA, STICS and WOFOST) was compared during 44 growing seasons of spring barley (Hordeum vulgare L) at seven sites in Northern and Central Europe. The aims of this model comparison were to examine how different process-based crop models perform at multiple sites across Europe when applied with minimal information for model calibration of spring barley at field scale, whether individual models perform better than the multi-model mean, and what the uncertainty ranges are in simulated grain yields. The reasons for differences among the models and how results for barley compare to winter wheat are discussed. Regarding yield estimation, best performing based on the root mean square error (RMSE) were models HERMES, MONICA and WOFOST with lowest values of 1124, 1282 and 1325 (kg ha(-1)), respectively. Applying the index of agreement (IA), models WOFOST, DAISY and HERMES scored best having highest values (0.632, 0.631 and 0.585, respectively). Most models systematically underestimated yields, whereby CROPSYST showed the highest deviation as indicated by the mean bias error (MBE) (-1159 kg ha(-1)). While the wide range of simulated yields across all sites and years shows the high uncertainties in model estimates with only restricted calibration, mean predictions from the nine models agreed well with observations. Results of this paper also show that models that were more accurate in predicting phenology were not necessarily the ones better estimating grain yields. Total above-ground biomass estimates often did not follow the patterns of grain yield estimates and, thus, harvest indices were also different. Estimates of soil moisture dynamics varied greatly. In comparison, even though the growing cycle for winter wheat is several months longer than for spring barley, using RMSE and IA as indicators, models performed slightly, but not significantly, better in predicting wheat yields. Errors in reproducing crop phenology were similar, which in conjunction with the shorter growth cycle of barley has higher effects on accuracy in yield prediction. (C) 2012 Elsevier B.V. All rights reserved.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4803
Permanent link to this record
 

 
Author Orsini, F.; Alnayef, M.; Bona, S.; Maggio, A.; Gianquinto, G.
Title Low stomatal density and reduced transpiration facilitate strawberry adaptation to salinity Type Journal Article
Year (down) 2012 Publication Environmental and Experimental Botany Abbreviated Journal Environmental and Experimental Botany
Volume 81 Issue Pages 1-10
Keywords stomatal density; leaf gas exchanges; transpiration; salt tolerance; osmotic adjustment; salt-stress tolerance; water-use efficiency; nacl salinity; hydraulic conductivity; irrigation water; dynamic indexes; leaf expansion; abscisic-acid; growth; plants
Abstract Water and soil salinization are major constraints to agricultural productions because plant adaptation to hyperosmotic environments is generally associated to reduced growth and ultimately yield loss. Understanding the physiological/molecular mechanisms that link adaptation and growth is one of the greatest challenges in plant stress research since it would allow us to better define strategies to improve crop salt tolerance. In this study we attempted to establish a functional link between morphological and physiological traits in strawberry in order to identify margins to “uncouple” plant growth and stress adaptation. Two strawberry cultivars, Elsanta and Elsinore, were grown under 0, 10.20 and 40 mM NaCl. Upon salinization Elsanta plants maintained a larger and more functional leaf area compared to Elsinore plants, which were irreversibly damaged at 40 mM NaCl. The tolerance of Elsanta was correlated with a constitutive reduced transpirational flux due to low stomata! density (173 vs. 234 stomata mm(-2) in Elsanta and Elsinore, respectively), which turned out to be critical to pre-adapt plants to the oncoming stress. The reduced transpiration rate of Elsanta (14.7 g H2O plant(-1) h(-1)) respect to Elsinore (17.7 g H2O plant(-1) h(-1)) most likely delayed the accumulation of toxic ions into the leaves, preserved tissues dehydration and consented to adjust more effectively to the hyperosmotic environment. Although we cannot rule out the contribution of other physiological and molecular mechanisms to the relatively higher tolerance of Elsanta, here we demonstrate that low stomatal density may be beneficial for cultivars prescribed to be used in marginal environments in terms of salinity and/or drought. (C) 2012 Elsevier B.V. All rights reserved.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0098-8472 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4797
Permanent link to this record
 

 
Author Toscano, P.; Ranieri, R.; Matese, A.; Vaccari, F.P.; Gioli, B.; Zaldei, A.; Silvestri, M.; Ronchi, C.; La Cava, P.; Porter, J.R.; Miglietta, F.
Title Durum wheat modeling: The Delphi system, 11 years of observations in Italy Type Journal Article
Year (down) 2012 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 43 Issue Pages 108-118
Keywords durum wheat; crop modeling; yield forecasting; calibration; scenarios; decision-support-system; crop simulation-model; ceres-wheat; mediterranean environment; winter-wheat; scaling-up; variability; quality; growth; water
Abstract ► Delphi system, based on AFRCWHEAT2 model, for durum wheat forecast. ► AFRCWHEAT2 model was calibrated and validated for three years. ► A scenario approach was applied to simulation of durum wheat yield. ► Operational mode for eleven years in rainfed and water limiting conditions. ► Accurate forecast as an useful planning tool. Crop models are frequently used in ecology, agronomy and environmental sciences for simulating crop and environmental variables at a discrete time step. The aim of this work was to test the predictive capacity of the Delphi system, calibrated and determined for each pedoclimatic factor affecting durum wheat during phenological development. at regional scale. We present an innovative system capable of predicting spatial yield variation and temporal yield fluctuation in long-term analysis, that are the main purposes of regional crop simulation study. The Delphi system was applied to simulate growth and yield of durum wheat in the major Italian supply basins (Basilicata, Capitanata, Marche, Tuscany). The model was validated and evaluated for three years (1995-1997) at 11 experimental fields and then used in operational mode for eleven years (1999-2009), showing an excellent/good accuracy in predicting grain yield even before maturity for a wide range of growing conditions in the Mediterranean climate, governed by different annual weather patterns. The results were evaluated on the basis of regression and normalized root mean squared error with known crop yield statistics at regional level. (c) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4596
Permanent link to this record
 

 
Author Rötter, R.P.; Palosuo, T.; Kersebaum, K.-C.; Angulo, C.; Bindi, M.; Ewert, F.; Ferrise, R.; Hlavinka, P.; Moriondo, M.; Olesen, J.E.; Takáč, J.; Trnka, M.
Title Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models Type Journal Article
Year (down) 2012 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 133 Issue Pages 23-36
Keywords Climate; Crop growth simulation; Model comparison; Spring barley; Yield variability; Uncertainty; change impacts; nitrogen dynamics; high-temperature; soil-moisture; elevated co2; ceres-wheat; data set; growth; drought; sensitivity
Abstract ► We compared nine crop simulation models for spring barley at seven sites in Europe. ► Applying crop models with restricted calibration leads to high uncertainties. ► Multi-crop model mean yield estimates were in good agreement with observations. ► The degree of uncertainty for simulated grain yield of barley was similar to winter wheat. ► We need more suitable data enabling us to verify different processes in the models. In this study, the performance of nine widely used and accessible crop growth simulation models (APES-ACE, CROPSYST, DAISY, DSSAT-CERES, FASSET, HERMES, MONICA, STICS and WOFOST) was compared during 44 growing seasons of spring barley (Hordeum vulgare L) at seven sites in Northern and Central Europe. The aims of this model comparison were to examine how different process-based crop models perform at multiple sites across Europe when applied with minimal information for model calibration of spring barley at field scale, whether individual models perform better than the multi-model mean, and what the uncertainty ranges are in simulated grain yields. The reasons for differences among the models and how results for barley compare to winter wheat are discussed. Regarding yield estimation, best performing based on the root mean square error (RMSE) were models HERMES, MONICA and WOFOST with lowest values of 1124, 1282 and 1325 (kg ha(-1)), respectively. Applying the index of agreement (IA), models WOFOST, DAISY and HERMES scored best having highest values (0.632, 0.631 and 0.585, respectively). Most models systematically underestimated yields, whereby CROPSYST showed the highest deviation as indicated by the mean bias error (MBE) (-1159 kg ha(-1)). While the wide range of simulated yields across all sites and years shows the high uncertainties in model estimates with only restricted calibration, mean predictions from the nine models agreed well with observations. Results of this paper also show that models that were more accurate in predicting phenology were not necessarily the ones better estimating grain yields. Total above-ground biomass estimates often did not follow the patterns of grain yield estimates and, thus, harvest indices were also different. Estimates of soil moisture dynamics varied greatly. In comparison, even though the growing cycle for winter wheat is several months longer than for spring barley, using RMSE and IA as indicators, models performed slightly, but not significantly, better in predicting wheat yields. Errors in reproducing crop phenology were similar, which in conjunction with the shorter growth cycle of barley has higher effects on accuracy in yield prediction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4592
Permanent link to this record