toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Refsgaard, J.C.; Madsen, H.; Andréassian, V.; Arnbjerg-Nielsen, K.; Davidson, T.A.; Drews, M.; Hamilton, D.P.; Jeppesen, E.; Kjellström, E.; Olesen, J.E.; Sonnenborg, T.O.; Trolle, D.; Willems, P.; Christensen, J.H. url  doi
openurl 
  Title A framework for testing the ability of models to project climate change and its impacts Type Journal Article
  Year (down) 2014 Publication Climatic Change Abbreviated Journal Clim. Change  
  Volume 122 Issue 1-2 Pages 271-282  
  Keywords simulation-models; shallow lakes; predictions; calibration; ensembles; terminology; uncertainty; temperature; adaptation; validation  
  Abstract Models used for climate change impact projections are typically not tested for simulation beyond current climate conditions. Since we have no data truly reflecting future conditions, a key challenge in this respect is to rigorously test models using proxies of future conditions. This paper presents a validation framework and guiding principles applicable across earth science disciplines for testing the capability of models to project future climate change and its impacts. Model test schemes comprising split-sample tests, differential split-sample tests and proxy site tests are discussed in relation to their application for projections by use of single models, ensemble modelling and space-time-substitution and in relation to use of different data from historical time series, paleo data and controlled experiments. We recommend that differential-split sample tests should be performed with best available proxy data in order to build further confidence in model projections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 1573-1480 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4688  
Permanent link to this record
 

 
Author Dono, G.; Raffaele, C.; Luca, G.; Roggero, P.P. openurl 
  Title Income Impacts of Climate Change: Irrigated Farming in the Mediterranean and Expected Changes in Probability of Favorable and Adverse Weather Conditions Type Journal Article
  Year (down) 2014 Publication German Journal of Agricultural Economics Abbreviated Journal German Journal of Agricultural Economics  
  Volume 63 Issue 3 Pages 177-186  
  Keywords discrete stochastic programming; rdp measures to adapt to climate change; economic impact of climate change; irrigated agriculture and climate change; insurance tools for adaptation to climate change; water markets; risk; variability; management; systems  
  Abstract EU rural development policy (RDP) regulation 1305/2013 aims to protect farmers’ incomes from ongoing change of climate variability (CCV), and the increase in frequency of adverse climatic events. An income stabilization tool (IST) is provided to compensate drastic drops in income, including those caused by climatic events. The present study examines some aspect of its application focussing on Mediterranean irrigation area where frequent water shortages may generate significant income reductions in the current climate conditions, and may be further exacerbated by climate change. This enhanced loss of income in the future would occur due to a change in climate variability. This change would appreciably reduce the probability of weather conditions that are favourable for irrigation, but would not significantly increase either the probability of unfavourable weather conditions or the magnitude of their impact. As the IST and other insurance tools that protect against adversity and catastrophic events are only activated under extreme conditions, farmers may not consider them to be suitable in dealing with the new climate regime. This would leave a portion of the financial resources allocated by the RDP unused, resulting in less support for climate change adaptation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-1121 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4669  
Permanent link to this record
 

 
Author Schönhart, M.; Mitter, H.; Schmid, E.; Heinrich, G.; Gobiet, A. openurl 
  Title Integrated analysis of climate change impacts and adaptation measures in Austrian agriculture Type Journal Article
  Year (down) 2014 Publication German Journal of Agricultural Economics Abbreviated Journal German Journal of Agricultural Economics  
  Volume 63 Issue 3 Pages 156-176  
  Keywords land use; modelling; climate change impact; adaptation; integrated analysis; epic; pasma; crop production; land-use; management-practices; model projections; central-europe; soil-erosion; water; variability; strategies; region  
  Abstract An integrated modelling framework (IMF) has been developed and applied to analyse climate change impacts and the effectiveness of adaptation measures in Austrian agriculture. The IMF couples the crop rotation model CropRota, the bio-physical process model EPIC and the bottom-up economic land use model PASMA at regional level (NUTS-3) considering agri-environmental indicators. Four contrasting regional climate model (RCM) simulations represent climate change until 2050. The RCM simulations are applied to a baseline and three adaptation and policy scenarios. Climate change increases crop productivity on national average in the IMF. Changes in average gross margins at national level range from 0% to + 5% between the baseline and the three adaptation and policy scenarios. The impacts at NUTS-3 level range from -5% to + 7% between the baseline and the three adaptation and policy scenarios. Adaptation measures such as planting of winter cover crops, reduced tillage and irrigation are effective in reducing yield losses, increasing revenues, or in improving environmental states under climate change. Future research should account for extreme weather events in order to analyse whether average productivity gains at the aggregated level suffice to cover costs from expected higher climate variability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-1121 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4652  
Permanent link to this record
 

 
Author Montesino-San Martín, M.; Olesen, J.E.; Porter, J.R. doi  openurl
  Title A genotype, environment and management (GxExM) analysis of adaptation in winter wheat to climate change in Denmark Type Journal Article
  Year (down) 2014 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 187 Issue Pages 1-13  
  Keywords Winter wheat; Climate change; Adaptation; Uncertainty; Europe; food security; model hadgem1; physical-properties; regional climate; change impacts; field-scale; land-use; yield; nitrogen; variability  
  Abstract Wheat yields in Europe have shown stagnating trends during the last two decades, partly attributed to climate change. Such developments challenge the needs for increased production, in particular at higher latitudes, to meet increasing global demands and expected productivity reductions at lower latitudes. Climate change projections from three General Circulation Models or GCMs (UKMO-HadGEM1, INM-GM3.0 and CSIRO-Mk3.1) for the A1FI SIZES emission scenario for 2000 to 2100 were downscaled at a northern latitude location (Foulum, Denmark) using LARS-WG5.3. The scenarios accounted for changes in temperature, precipitation and atmospheric CO2 concentration. In addition, three temperature-variability scenarios were included assuming different levels of decreased temperature variability in winter and increased in summer. Crop yield was simulated for the different climate change scenarios by a calibrated version of AFRCWHEAT2 to model several combinations of genotypes (varying in crop growth, development and tolerance to water and nitrogen scarcity) and management (sowing dates and nitrogen fertilization rate). The simulations showed a slight improvement of grain yields (0.3-1.2 Mg ha(-1)) in the medium-term (2030-2050), but not enough to cope with expected increases in demand for food and feed. Optimum management added up to 1.8 Mg ha(-1). Genetic modifications regarding winter wheat crop development exhibit the greatest sensitivity to climate and larger potential for improvement (+3.8 Mg ha(-1)). The results consistently points towards need for cultivars with a longer reproductive phases (2.9-7.5% per 1 degrees C) and lower photoperiod sensitivities. Due to the positive synergies between several genotypic characteristics, multiple-target breeding programmes would be necessary, possibly assisted by model-based assessments of optimal phenotypic characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4630  
Permanent link to this record
 

 
Author Nendel, C.; Kersebaum, K.C.; Mirschel, W.; Wenkel, K.O. url  doi
openurl 
  Title Testing farm management options as climate change adaptation strategies using the MONICA model Type Journal Article
  Year (down) 2014 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 52 Issue Pages 47-56  
  Keywords simulation model; climate change; crop management; adaptation strategies; nitrogen dynamics; carbon sequestration; crop productivity; simulation-model; change impacts; land-use; agriculture; scenarios; growth; yield  
  Abstract Adaptation of agriculture to climate change will be driven at the farm level in first place. The MONICA model was employed in four different modelling exercises for demonstration and testing different management options for farmers in Germany to adjust their production system. 30-Year simulations were run for the periods 1996-2025 and 2056-2085 using future climate data generated by a statistical method on the basis of measured data from 1961 to 2000 and the A1B scenario of the IPCC (2007a). Crop rotation designs that are expected to become possible in the future due to a prolonged vegetation period and at the same time shortened cereal growth period were tested for their likely success. The model suggested that a spring barley succeeding a winter barley may be successfully grown in the second half of the century, allowing for a larger yields by intensification of the cropping cycle. Growing a winter wheat after a sugar beet may lead to future problems as late sowing makes the winter wheat grow into periods prone to drought. Irrigation is projected to considerably improve and stabilise the yields of late cereals and of shallow rooting crops (maize and pea) on sandy soils in the continental climate part of Germany, but not in the humid West. Nitrogen fertiliser management needs to be adjusted to increasing or decreasing yield expectations and for decreasing soil moisture. On soils containing sufficient amounts of Moisture and soil organic matter, enhanced mineralisation is expected to compensate for a greater N demand. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4631  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: