|   | 
Details
   web
Records
Author Luo, K.; Tao, F.; Deng, X.; Moiwo, J.P.
Title Changes in potential evapotranspiration and surface runoff in 1981-2010 and the driving factors in Upper Heihe River Basin in Northwest China Type Journal Article
Year (down) 2017 Publication Hydrological Processes Abbreviated Journal Hydrol. Process.
Volume 31 Issue 1 Pages 90-103
Keywords driving factor; potential evaporation; surface runoff; SWAT model; Upper Heihe River Basin; SWAT Hydrologic Model; Pan Evaporation; Vegetation Model; Climate-Change; Water; Trends; Precipitation; Uncertainty; Variability; Generation
Abstract Changes in potential evapotranspiration and surface runoff can have profound implications for hydrological processes in arid and semiarid regions. In this study, we investigated the response of hydrological processes to climate change in Upper Heihe River Basin in Northwest China for the period from 1981 to 2010. We used agronomic, climatic and hydrological data to drive the Soil and Water Assessment Tool model for changes in potential evapotranspiration (ET0) and surface runoff and the driving factors in the study area. The results showed that increasing autumn temperature increased snow melt, resulting in increased surface runoff, especially in September and October. The spatial distribution of annual runoff was different from that of seasonal runoff, with the highest runoff in Yeniugou River, followed by Babaohe River and then the tributaries in the northern of the basin. There was no evaporation paradox at annual and seasonal time scales, and annual ET0 was driven mainly by wind speed. ET0 was driven by relative humidity in spring, sunshine hour duration in autumn and both sunshine hour duration and relative humility in summer. Surface runoff was controlled by temperature in spring and winter and by precipitation in summer (flood season). Although surface runoff increased in autumn with increasing temperature, it depended on rainfall in September and on temperature in October and November. Copyright (C) 2016 John Wiley & Sons, Ltd.
Address 2018-08-23
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0885-6087 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5207
Permanent link to this record
 

 
Author Yang, H.; Dobbie, S.; Ramirez-Villegas, J.; Feng, K.; Challinor, A.J.; Chen, B.; Gao, Y.; Lee, L.; Yin, Y.; Sun, L.; Watson, J.; Koehler, A.-K.; Fan, T.; Ghosh, S.
Title Potential negative consequences of geoengineering on crop production: A study of Indian groundnut Type Journal Article
Year (down) 2016 Publication Geophysical Research Letters Abbreviated Journal Geophys. Res. Let.
Volume 43 Issue 22 Pages 11786-11795
Keywords Mangrove Tidal Creek; Land-Ocean Boundary; Carbon-Dioxide; Organic-Matter; River Estuary; European Estuaries; CO2 Fluxes; NE Coast; Water; Bay; fCO(2) (water); air-water CO2 flux; Hugli Estuary; Matla Estuary; Blue Carbon; source of CO2
Abstract Geoengineering has been proposed to stabilize global temperature, but its impacts on crop production and stability are not fully understood. A few case studies suggest that certain crops are likely to benefit from solar dimming geoengineering, yet we show that geoengineering is projected to have detrimental effects for groundnut. Using an ensemble of crop-climate model simulations, we illustrate that groundnut yields in India undergo a statistically significant decrease of up to 20% as a result of solar dimming geoengineering relative to RCP4.5. It is somewhat reassuring, however, to find that after a sustained period of 50 years of geoengineering crop yields return to the nongeoengineered values within a few years once the intervention is ceased.
Address 2017-01-20
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0094-8276 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_MACSUR Approved no
Call Number MA @ admin @ Serial 4936
Permanent link to this record
 

 
Author Baranowski, P.; Krzyszczak, J.; Slawinski, C.; Hoffmann, H.; Kozyra, J.; Nieróbca, A.; Siwek, K.; Gluza, A.
Title Multifractal analysis of meteorological time series to assess climate impacts Type Journal Article
Year (down) 2015 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 65 Issue Pages 39-52
Keywords multifractal analysis; time series; agro-meteorological parameters; detrended fluctuation analysis; daily temperature records; catalonia ne spain; fractal analysis; river-basin; precipitation; variability; patterns; trends; china
Abstract Agro-meteorological quantities are often in the form of time series, and knowledge about their temporal scaling properties is fundamental for transferring locally measured fluctuations to larger scales and vice versa. However, the scaling analysis of these quantities is complicated due to the presence of localized trends and nonstationarities. The objective of this study was to characterise scaling properties (i.e. statistical self-similarity) of the chosen agro-meteorological quantities through multifractal detrended fluctuation analysis (MFDFA). For this purpose, MFDFA was performedwith 11 322 measured time series (31 yr) of daily air temperature, wind velocity, relative air humidity, global radiation and precipitation from stations located in Finland, Germany, Poland and Spain. The empirical singularity spectra indicated their multifractal structure. The richness of the studied multifractals was evaluated by the width of their spectrum, indicating considerable differences in dynamics and development. In log-log plots of the cumulative distributions of all meteorological parameters the linear functions prevailed for high values of the response, indicating that these distributions were consistent with power-law asymptotic behaviour. Additionally, we investigated the type of multifractality that underlies the q-dependence of the generalized Hurst exponent by analysing the corresponding shuffled and surrogate time series. For most of the studied meteorological parameters, the multifractality is due to different long-range correlations for small and large fluctuations. Only for precipitation does the multifractality result mainly from broad probability function. This feature may be especially valuable for assessing the effect of change in climate dynamics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577x 1616-1572 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4666
Permanent link to this record
 

 
Author Conradt, T.; Wechsung, F.; Bronstert, A.
Title Three perceptions of the evapotranspiration landscape: comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances Type Journal Article
Year (down) 2013 Publication Hydrology and Earth System Sciences Abbreviated Journal Hydrol. Earth System Sci.
Volume 17 Issue 7 Pages 2947-2966
Keywords senegal river-basin; data assimilation; sensing data; regional evapotranspiration; intercomparison project; environmental-models; oklahoma experiments; solar-radiation; satellite data; scale
Abstract A problem encountered by many distributed hydrological modelling studies is high simulation errors at interior gauges when the model is only globally calibrated at the outlet. We simulated river runoff in the Elbe River basin in central Europe (148 268 km(2)) with the semi-distributed eco-hydrological model SWIM (Soil and Water Integrated Model). While global parameter optimisation led to Nash-Sutcliffe efficiencies of 0.9 at the main outlet gauge, comparisons with measured runoff series at interior points revealed large deviations. Therefore, we compared three different strategies for deriving sub-basin evapotranspiration: (1) modelled by SWIM without any spatial calibration, (2) derived from remotely sensed surface temperatures, and (3) calculated from long-term precipitation and discharge data. The results show certain consistencies between the modelled and the remote sensing based evapotranspiration rates, but there seems to be no correlation between remote sensing and water balance based estimations. Subsequent analyses for single sub-basins identify amongst others input weather data and systematic error amplification in inter-gauge discharge calculations as sources of uncertainty. The results encourage careful utilisation of different data sources for enhancements in distributed hydrological modelling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1607-7938 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4485
Permanent link to this record