|   | 
Details
   web
Records
Author Hlavinka, P.; Kersebaum, K.C.; Dubrovský, M.; Pohanková, E.; Balek, J.; Žalud, Z.; Trnka, M.
Title Water balance and yield estimates for field crop rotations present versus future conditions based on transient scenarios Type Conference Article
Year (up) 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR CropM International Symposium and Workshop: Modelling climate change impacts on crop production for food security, Oslo, Norway, 2014-02-10 to 2014-02-12
Notes Approved no
Call Number MA @ admin @ Serial 2478
Permanent link to this record
 

 
Author Hlavinka, P.; Trnka, M.; Kersebaum, K.C.; Cermák, P.; Pohanková, E.; Orság, M.; Pokorný, E.; Fischer, M.; Brtnický, M.; Žalud, Z.
Title Modelling of yields and soil nitrogen dynamics for crop rotations by HERMES under different climate and soil conditions in the Czech Republic Type Journal Article
Year (up) 2014 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.
Volume 152 Issue 02 Pages 188-204
Keywords winter oilseed rape; spring barley; central-europe; growth; simulation; wheat; adaptation; impact; water; agriculture
Abstract The crop growth model HERMES was used to model crop rotation cycles at 12 experimental sites in the Czech Republic. A wide range of crops (spring and winter barley, winter wheat, maize, potatoes, sugar beet, winter rape, oats, alfalfa and grass), cultivated between 1981 and 2009 under various soil and climatic conditions, were included. The model was able to estimate the yields of field crop rotations at a reasonable level, with an index of agreement (IA) ranging from 0.82 to 0.96 for the calibration database (the median coefficient of determination (R-2) was 0.71), while IA for verification varied from 0.62 to 0.93 (median R-2 was 0.78). Grass yields were also estimated at a reasonable level of accuracy. The estimates were less accurate for the above-ground biomass at harvest (the medians for IA were 0.76 and 0.72 for calibration and verification, respectively, and analogous medians of R-2 were 0.50 and 0.49). The soil mineral nitrogen (N) content under the field crops was simulated with good precision, with the IA ranging from 0.49 to 0.74 for calibration and from 0.43 to 0.68 for verification. Generally, the soil mineral N was underestimated, and more accurate results were achieved at locations with intensive fertilization. Simulated yields, soil N, water and organic carbon (C) contents were compared with long-term field measurements at Ne. mc. ice, located within the fertile Moravian lowland. At this station, all of the observed parameters were reproduced with a reasonable level of accuracy. In the case of the organic C content, HERMES reproduced a decrease ranging from c. 85 to 77 tonnes (t)/ha (for the 0-0.3 m soil layer) between the years 1980 and 2007. In spite of its relatively simple approach and restricted input data, HERMES was proven to be robust across various conditions, which is a precondition for its future use for both theoretical and practical purposes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8596 1469-5146 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4626
Permanent link to this record
 

 
Author Angulo, C.; Gaiser, T.; Rötter, R.P.; Børgesen, C.D.; Hlavinka, P.; Trnka, M.; Ewert, F.
Title ‘Fingerprints’ of four crop models as affected by soil input data aggregation Type Journal Article
Year (up) 2014 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 61 Issue Pages 35-48
Keywords crop model; soil data; spatial resolution; yield distribution; aggregation; us great-plains; climate-change; integrated assessment; simulating wheat; yields; scale; productivity; uncertainty; variability; responses
Abstract • Systematic analysis of the influence of spatial soil data resolution on simulated regional yields and total growing season evapotranspiration. • The responses of four crop models of different complexity are compared. • Differences between models are larger than the effect of the chosen spatial soil data resolution. • Low influence of soil data resolution due to: high precipitation amount, methods for calculating water retention and method of data aggregation. The spatial variability of soil properties is an important driver of yield variability at both field and regional scale. Thus, when using crop growth simulation models, the choice of spatial resolution of soil input data might be key in order to accurately reproduce observed yield variability. In this study we used four crop models (SIMPLACE<LINTUL-SLIM>, DSSAT-CSM, EPIC and DAISY) differing in the detail of modeling above-ground biomass and yield as well as of modeling soil water dynamics, water uptake and drought effects on plants to simulate winter wheat in two (agro-climatologically and geo-morphologically) contrasting regions of the federal state of North-Rhine-Westphalia (Germany) for the period from 1995 to 2008. Three spatial resolutions of soil input data were taken into consideration, corresponding to the following map scales: 1:50 000, 1:300 000 and 1:1 000 000. The four crop models were run for water-limited production conditions and model results were evaluated in the form of frequency distributions, depicted by bean-plots. In both regions, soil data aggregation had very small influence on the shape and range of frequency distributions of simulated yield and simulated total growing season evapotranspiration for all models. Further analysis revealed that the small influence of spatial resolution of soil input data might be related to: (a) the high precipitation amount in the region which partly masked differences in soil characteristics for water holding capacity, (b) the loss of variability in hydraulic soil properties due to the methods applied to calculate water retention properties of the used soil profiles, and (c) the method of soil data aggregation. No characteristic “fingerprint” between sites, years and resolutions could be found for any of the models. Our results support earlier recommendation to evaluate model results on the basis of frequency distributions since these offer quick and better insight into the distribution of simulation results as compared to summary statistics only. Finally, our results support conclusions from other studies about the usefulness of considering a multi-model approach to quantify the uncertainty in simulated yields introduced by the crop growth simulation approach when exploring the effects of scaling for regional yield impact assessments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4511
Permanent link to this record
 

 
Author Kersebaum, K.C.; Kollas, C.; Bindi, M.; Palosuo, T.; Wu, L.; Sharif, B.; Öztürk, I.; Trnka, M.; Hlavinka, P.; Nendel, C.; Müller, C.; Waha, K.; Armas-Herrera, C.; Olesen, J.E.; Eitzinger, J.; Roggero, P.P.; Conradt, T.; Martre, P.; Ferrise, R.; Moriondo, M.; Ruiz-Ramos, M.; Ventrella, D.; Rötter, R.P.; Wegehenkel, M.; Eckersten, H.; Lorite Torres, I.J.; Hernandez, C.G.; Launay, M.; De Wit, A.; Hoffmann, H.; Weigel, H.-J.; Manderscheid, R.; Beaudoin, N.; Constantin, J.; Garcia de Cortazar-Atauri, I.; Mary, B.; Ripoche, D.; Ruget, F.
Title Model inter-comparison on crop rotation effects – an intermediate report Type Conference Article
Year (up) 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Data of diverse crop rotations from five locations across Europe were distributed to modelers to investigate the capability of models to handle complex crop rotations and management interactions. Crop rotations comprise various main crops (winter/spring wheat, winter/spring barley, rye, oat, maize, sugar beet, oil seed rape and potatoes) plus several catch crops. The experimental setup of the datasets included treatments such as modified soils, crops exchanged within the rotations, irrigation/rainfed, nitrogen fertilization, residue management, tillage and atmospheric CO2 concentration. 19 modeling teams registered to model either the whole rotation or single crops. Models which are capable to run the whole rotation should provide transient as well as single year simulations with a reset of initial conditions. In the first step only initial soil conditions (water and soil mineral N) of the first year and key phenological stages were provided to the modelers. For calibration, crop yields and biomass were provided for selected years but not for all seasons. In total the combination of treatments and seasons results in 301 years of simulation. Results were analyzed to evaluate the effect of transient simulation versus single-year simulation regarding crop yield, biomass, water and nitrogen balance components. Model results will be evaluated crop-specifically to identify crops with highest uncertainty and potential for model improvement. Full data will be provided to modelers for model-improvement and results will provide insights into model capabilities to reproduce treatments and crops. Further, the question of error propagation along the transient simulation of crop rotations will be addressed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference
Series Volume 3(S) Sassari, Italy Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy
Notes Approved no
Call Number MA @ admin @ Serial 5104
Permanent link to this record
 

 
Author Trnka, M.; Hlavinka, P.; Semenov, M.A.
Title Adaptation options for wheat in Europe will be limited by increased adverse weather events under climate change Type Journal Article
Year (up) 2015 Publication Journal of the Royal Society Interface Abbreviated Journal J. R. Soc. Interface
Volume 12 Issue 112 Pages 20150721
Keywords climate change; extreme events; food security; winter wheat
Abstract Ways of increasing the production of wheat, the most widely grown cereal crop, will need to be found to meet the increasing demand caused by human population growth in the coming decades. This increase must occur despite the decrease in yield gains now being reported in some regions, increased price volatility and the expected increase in the frequency of adverse weather events that can reduce yields. However, if and how the frequency of adverse weather events will change over Europe, the most important wheat-growing area, has not yet been analysed. Here, we show that the accumulated probability of 11 adverse weather events with the potential to significantly reduce yield will increase markedly across all of Europe. We found that by the end of the century, the exposure of the key European wheat-growing areas, where most wheat production is currently concentrated, may increase more than twofold. However, if we consider the entire arable land area of Europe, a greater than threefold increase in risk was predicted. Therefore, shifting wheat production to new producing regions to reduce the risk might not be possible as the risk of adverse events beyond the key wheat-growing areas increases even more. Furthermore, we found a marked increase in wheat exposure to high temperatures, severe droughts and field inaccessibility compared with other types of adverse events. Our results also showed the limitations of some of the presently debated adaptation options and demonstrated the need for development of region-specific strategies. Other regions of the world could be affected by adverse weather events in the future in a way different from that considered here for Europe. This observation emphasizes the importance of conducting similar analyses for other major wheat regions.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-5689 1742-5662 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4819
Permanent link to this record