toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Elliott, J.; Müller, C.; Deryng, D.; Chryssanthacopoulos, J.; Boote, K.J.; Büchner, M.; Foster, I.; Glotter, M.; Heinke, J.; Iizumi, T.; Izaurralde, R.C.; Mueller, N.D.; Ray, D.K.; Rosenzweig, C.; Ruane, A.C.; Sheffield, J. url  doi
openurl 
  Title The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0) Type Journal Article
  Year (up) 2015 Publication Geoscientific Model Development Abbreviated Journal Geosci. Model Dev.  
  Volume 8 Issue 2 Pages 261-277  
  Keywords land-surface model; climate-change; systems simulation; high-resolution; water; carbon; yield; agriculture; patterns; growth  
  Abstract We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project includes global simulations of yields, phenologies, and many land-surface fluxes using 12-15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification of key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1991-9603 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4559  
Permanent link to this record
 

 
Author Coucheney, E.; Buis, S.; Launay, M.; Constantin, J.; Mary, B.; García de Cortázar-Atauri, I.; Ripoche, D.; Beaudoin, N.; Ruget, F.; &rianarisoa, K.S.; Le Bas, C.; Justes, E.; Léonard, J. url  doi
openurl 
  Title Accuracy, robustness and behavior of the STICS soil–crop model for plant, water and nitrogen outputs: Evaluation over a wide range of agro-environmental conditions in France Type Journal Article
  Year (up) 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 64 Issue Pages 177-190  
  Keywords soil-crop model; stics; model performances; plant biomass; soil nitrogen; soil water; remote-sensing data; goodness-of-fit; hydrological model; simulation-models; solar-radiation; regional-scale; climate-change; generic model; data set; validation  
  Abstract Soil-crop models are increasingly used as predictive tools to assess yield and environmental impacts of agriculture in a growing diversity of contexts. They are however seldom evaluated at a given time over a wide domain of use. We tested here the performances of the STICS model (v8.2.2) with its standard set of parameters over a dataset covering 15 crops and a wide range of agropedoclimatic conditions in France. Model results showed a good overall accuracy, with little bias. Relative RMSE was larger for soil nitrate (49%) than for plant biomass (35%) and nitrogen (33%) and smallest for soil water (10%). Trends induced by contrasted environmental conditions and management practices were well reproduced. Finally, limited dependency of model errors on crops or environments indicated a satisfactory robustness. Such performances make STICS a valuable tool for studying the effects of changes in agro-ecosystems over the domain explored. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4554  
Permanent link to this record
 

 
Author Bellocchi, G.; Rivington, M.; Matthews, K.; Acutis, M. url  doi
openurl 
  Title Deliberative processes for comprehensive evaluation of agroecological models. A review Type Journal Article
  Year (up) 2015 Publication Agronomy for Sustainable Development Abbreviated Journal Agron. Sust. Developm.  
  Volume 35 Issue 2 Pages 589-605  
  Keywords component-oriented programing; deliberative approach; modeling; model evaluation; multiple metrics; stakeholders; decision-support-systems; environmental-models; performance evaluation; groundwater models; farming systems; climate-change; irene-dll; simulation; validation; integration  
  Abstract The use of biophysical models in agroecology has increased in the last few decades for two main reasons: the need to formalize empirical knowledge and the need to disseminate model-based decision support for decision makers (such as farmers, advisors, and policy makers). The first has encouraged the development and use of mathematical models to enhance the efficiency of field research through extrapolation beyond the limits of site, season, and management. The second reflects the increasing need (by scientists, managers, and the public) for simulation experimentation to explore options and consequences, for example, future resource use efficiency (i.e., management in sustainable intensification), impacts of and adaptation to climate change, understanding market and policy responses to shocks initiated at a biophysical level under increasing demand, and limited supply capacity. Production concerns thus dominate most model applications, but there is a notable growing emphasis on environmental, economic, and policy dimensions. Identifying effective methods of assessing model quality and performance has become a challenging but vital imperative, considering the variety of factors influencing model outputs. Understanding the requirements of stakeholders, in respect of model use, logically implies the need for their inclusion in model evaluation methods. We reviewed the use of metrics of model evaluation, with a particular emphasis on the involvement of stakeholders to expand horizons beyond conventional structured, numeric analyses. Two major topics are discussed: (1) the importance of deliberative processes for model evaluation, and (2) the role computer-aided techniques may play to integrate deliberative processes into the evaluation of agroecological models. We point out that (i) the evaluation of agroecological models can be improved through stakeholder follow-up, which is a key for the acceptability of model realizations in practice, (ii) model credibility depends not only on the outcomes of well-structured, numerically based evaluation, but also on less tangible factors that may need to be addressed using complementary deliberative processes, (iii) comprehensive evaluation of simulation models can be achieved by integrating the expectations of stakeholders via a weighting system of preferences and perception, (iv) questionnaire-based surveys can help understand the challenges posed by the deliberative process, and (v) a benefit can be obtained if model evaluation is conceived in a decisional perspective and evaluation techniques are developed at the same pace with which the models themselves are created and improved. Scientific knowledge hubs are also recognized as critical pillars to advance good modeling practice in relation to model evaluation (including access to dedicated software tools), an activity which is frequently neglected in the context of time-limited framework programs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1774-0746 1773-0155 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4551  
Permanent link to this record
 

 
Author Van Oijen, M.; Höglind, M. doi  openurl
  Title Toward a Bayesian procedure for using process-based models in plant breeding, with application to ideotype design Type Journal Article
  Year (up) 2016 Publication Euphytica Abbreviated Journal Euphytica  
  Volume 207 Issue 3 Pages 627-643  
  Keywords BASGRA; cold tolerance; genotype-environment interaction; plant breeding; process-based modelling; yield stability; grassland productivity; timothy regrowth; climate-change; water-deficit; forest models; late blight; leaf-area; calibration; growth; tolerance  
  Abstract Process-based grassland models (PBMs) simulate growth and development of vegetation over time. The models tend to have a large number of parameters that represent properties of the plants. To simulate different cultivars of the same species, different parameter values are required. Parameter differences may be interpreted as genetic variation for plant traits. Despite this natural connection between PBMs and plant genetics, there are only few examples of successful use of PBMs in plant breeding. Here we present a new procedure by which PBMs can help design ideotypes, i.e. virtual cultivars that optimally combine properties of existing cultivars. Ideotypes constitute selection targets for breeding. The procedure consists of four steps: (1) Bayesian calibration of model parameters using data from cultivar trials, (2) Estimating genetic variation for parameters from the combination of cultivar-specific calibrated parameter distributions, (3) Identifying parameter combinations that meet breeding objectives, (4) Translating model results to practice, i.e. interpreting parameters in terms of practical selection criteria. We show an application of the procedure to timothy (Phleum pratense L.) as grown in different regions of Norway.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-2336 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4820  
Permanent link to this record
 

 
Author Sándor, R.; Barcza, Z.; Hidy, D.; Lellei-Kovács, E.; Ma, S.; Bellocchi, G. url  doi
openurl 
  Title Modelling of grassland fluxes in Europe: evaluation of two biogeochemical models Type Journal Article
  Year (up) 2016 Publication Agriculture, Ecosystems and Environment Abbreviated Journal Agric. Ecosyst. Environ.  
  Volume 215 Issue Pages 1-19  
  Keywords carbon-water fluxes; climate change; grasslands; model comparison; net ecosystem exchange; terrestrial carbon balance; pasture simulation-model; climate-change; nitrous-oxide; land-use; co2; photosynthesis; responses; water  
  Abstract Two independently developed simulation models – the grassland-specific PaSim and the biome-generic Biome-BGC MuSo (BBGC MuSo) – linking climate, soil, vegetation and management to ecosystem biogeochemical cycles were compared in a simulation of carbon (C) and water fluxes. The results were assessed against eddy-covariance flux data from five observational grassland sites representing a range of conditions in Europe: Grillenburg in Germany, Laqueuille in France with both extensive and intensive management, Monte Bondone in Italy and Oensingen in Switzerland. Model comparison (after calibration) gave substantial agreement, the performances being marginal to acceptable for weekly-aggregated gross primary production and ecosystem respiration (R-2 similar to 0.66 – 0.91), weekly evapotranspiration (R-2 similar to 0.78 – 0.94), soil water content in the topsoil (R-2 similar to 0.1 -0.7) and soil temperature (R-2 similar to 0.88 – 0.96). The bias was limited to the range -13 to 9 g C m(-2) week(-1) for C fluxes (-11 to 8 g C m(-2) week(-1) in case of BBGC MuSo, and -13 to 9 g C m(-2) week(-1) in case of PaSim) and -4 to 6 mm week for water fluxes (with BBGC MuSo providing somewhat higher estimates than PaSim), but some higher relative root mean square errors indicate low accuracy for prediction, especially for net ecosystem exchange The sensitivity of simulated outputs to changes in atmospheric carbon dioxide concentration ([CO2]), temperature and precipitation indicate, with certain agreement between the two models, that C outcomes are dominated by [CO2] and temperature gradients, and are less due to precipitation. ET rates decrease with increasing [CO2] in PaSim (consistent with experimental knowledge), while lack of appropriate stomatal response could be a limit in BBGC MuSo responsiveness. Results of the study indicate that some of the errors might be related to the improper representation of soil water content and soil temperature. Improvement is needed in the model representations of soil processes (especially soil water balance) that strongly influence the biogeochemical cycles of managed and unmanaged grasslands. (C) 2015 Elsevier B.V. All rights reserved.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8809 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4808  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: