|   | 
Details
   web
Records
Author Salo, T.J.; Palosuo, T.; Kersebaum, K.C.; Nendel, C.; Angulo, C.; Ewert, F.; Bindi, M.; Calanca, P.; Klein, T.; Moriondo, M.; Ferrise, R.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Takáč, J.; Hlavinka, P.; Trnka, M.; Rötter, R.P.
Title Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization Type Journal Article
Year (down) 2016 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.
Volume 154 Issue 7 Pages 1218-1240
Keywords northern growing conditions; climate-change impacts; spring barley; systems simulation; farming systems; soil properties; winter-wheat; dynamics; growth; management
Abstract Eleven widely used crop simulation models (APSIM, CERES, CROPSYST, COUP, DAISY, EPIC, FASSET, HERMES, MONICA, STICS and WOFOST) were tested using spring barley (Hordeum vulgare L.) data set under varying nitrogen (N) fertilizer rates from three experimental years in the boreal climate of Jokioinen, Finland. This is the largest standardized crop model inter-comparison under different levels of N supply to date. The models were calibrated using data from 2002 and 2008, of which 2008 included six N rates ranging from 0 to 150 kg N/ha. Calibration data consisted of weather, soil, phenology, leaf area index (LAI) and yield observations. The models were then tested against new data for 2009 and their performance was assessed and compared with both the two calibration years and the test year. For the calibration period, root mean square error between measurements and simulated grain dry matter yields ranged from 170 to 870 kg/ha. During the test year 2009, most models failed to accurately reproduce the observed low yield without N fertilizer as well as the steep yield response to N applications. The multi-model predictions were closer to observations than most single-model predictions, but multi-model mean could not correct systematic errors in model simulations. Variation in soil N mineralization and LAI development due to differences in weather not captured by the models most likely was the main reason for their unsatisfactory performance. This suggests the need for model improvement in soil N mineralization as a function of soil temperature and moisture. Furthermore, specific weather event impacts such as low temperatures after emergence in 2009, tending to enhance tillering, and a high precipitation event just before harvest in 2008, causing possible yield penalties, were not captured by any of the models compared in the current study.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8596 1469-5146 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4713
Permanent link to this record
 

 
Author Nguyen, T.P.L.; Seddaiu, G.; Virdis, S.G.P.; Tidore, C.; Pasqui, M.; Roggero, P.P.
Title Perceiving to learn or learning to perceive? Understanding farmers’ perceptions and adaptation to climate uncertainties Type Journal Article
Year (down) 2016 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 143 Issue Pages 205-216
Keywords climate variability; socio-cognitive learning process; adaptation strategies; mediterranean agricultural systems; agricultural land-use; adaptive capacity; farming systems; variability; knowledge; risk; drought; africa; future; rain
Abstract Perception not only shapes knowledge but knowledge also shapes perception. Humans adapt to the natural world through a process of learning in which they interpret their sensory impressions in order to give meaning to their environment and act accordingly. In this research, we examined how farmers’ decision making is shaped in the context of changing climate. Using empirical data (face-to-face semi-structured interviews and questionnaires) on four Mediterranean farming systems from a case study located in Oristano (Sardinia, Italy) we sought to understand farmers’ perception of climate change and their behaviors in adjustment of farming practices. We found different perceptions among farmer groups were mainly associated with the different socio-cultural and institutional settings and perceived relationships between climate factors and impacts on each farming systems. The research findings on different perceptions among farmer groups can help to understand farmers’ current choices and attitudes of adaptation for supporting the development of appropriate adaptation strategies. In addition, the knowledge of socio-cultural and economic factors that lead to biases in climate perceptions can help to integrate climate communication into adaptation research for making sense of climate impacts and responses at farm level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4707
Permanent link to this record
 

 
Author van Bussel, L.G.J.; Ewert, F.; Zhao, G.; Hoffmann, H.; Enders, A.; Wallach, D.; Asseng, S.; Baigorria, G.A.; Basso, B.; Biernath, C.; Cammarano, D.; Chryssanthacopoulos, J.; Constantin, J.; Elliott, J.; Glotter, M.; Heinlein, F.; Kersebaum, K.-C.; Klein, C.; Nendel, C.; Priesack, E.; Raynal, H.; Romero, C.C.; Rötter, R.P.; Specka, X.; Tao, F.
Title Spatial sampling of weather data for regional crop yield simulations Type Journal Article
Year (down) 2016 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 220 Issue Pages 101-115
Keywords Regional crop simulations; Winter wheat; Upscaling; Stratified sampling; Yield estimates; climate-change scenarios; water availability; growth simulation; potential impact; food-production; winter-wheat; model; resolution; systems; soil
Abstract Field-scale crop models are increasingly applied at spatio-temporal scales that range from regions to the globe and from decades up to 100 years. Sufficiently detailed data to capture the prevailing spatio-temporal heterogeneity in weather, soil, and management conditions as needed by crop models are rarely available. Effective sampling may overcome the problem of missing data but has rarely been investigated. In this study the effect of sampling weather data has been evaluated for simulating yields of winter wheat in a region in Germany over a 30-year period (1982-2011) using 12 process-based crop models. A stratified sampling was applied to compare the effect of different sizes of spatially sampled weather data (10, 30, 50,100, 500, 1000 and full coverage of 34,078 sampling points) on simulated wheat yields. Stratified sampling was further compared with random sampling. Possible interactions between sample size and crop model were evaluated. The results showed differences in simulated yields among crop models but all models reproduced well the pattern of the stratification. Importantly, the regional mean of simulated yields based on full coverage could already be reproduced by a small sample of 10 points. This was also true for reproducing the temporal variability in simulated yields but more sampling points (about 100) were required to accurately reproduce spatial yield variability. The number of sampling points can be smaller when a stratified sampling is applied as compared to a random sampling. However, differences between crop models were observed including some interaction between the effect of sampling on simulated yields and the model used. We concluded that stratified sampling can considerably reduce the number of required simulations. But, differences between crop models must be considered as the choice for a specific model can have larger effects on simulated yields than the sampling strategy. Assessing the impact of sampling soil and crop management data for regional simulations of crop yields is still needed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4673
Permanent link to this record
 

 
Author Fan, F.; Henriksen, C.B.; Porter, J.
Title Valuation of ecosystem services in organic cereal crop production systems with different management practices in relation to organic matter input Type Journal Article
Year (down) 2016 Publication Ecosystem Services Abbreviated Journal Ecosystem Services
Volume 22 Issue Pages 117-127
Keywords soil physical-properties; carbon sequestration; microbial biomass; farming systems; nitrogen mineralization; earthworm populations; straw; incorporation; economic valuation; agricultural soils; different tillage; Organic farming; Ecosystem services; Economic valuation; Management; Informed decision making
Abstract As the degradation of global ecosystem services (ES) continues in the last five decades, maintaining or even enhancing the ES of agro-ecosystem is one of the approaches to mitigate the global ES loss. This study provides the first estimate of an economic valuation of ES provided by organic cereal crop production systems with different management practices in relation to organic matter input (low, medium and high). Our results show that organic matter inputs significantly affect the total ES value on organic cereal crop production systems. The system with high organic matter input has the highest gross total ES value (US$ 1969 ha(-1) yr(-1)), followed by the low organic matter input system (US$ 1688 ha(-1) yr(-1)), and the lowest ES value are found in the medium organic matter input system (US$ 1492 ha(-1) yr(-1)). Organic matter inputs have strong positive relationship with non-marketable ES values, while this relationship was not found in marketable ES values. Monetizing the ES can be used by land managers and policy makers to adjust management practices in terms of organic matter input in cereal production system with a long term goal for sustainable agriculture.
Address 2017-01-12
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-0416 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_MACSUR Approved no
Call Number MA @ admin @ Serial 4934
Permanent link to this record
 

 
Author Sandhu, H.; Wratten, S.; Costanza, R.; Pretty, J.; Porter, J.R.; Reganold, J.
Title Significance and value of non-traded ecosystem services on farmland Type Journal Article
Year (down) 2015 Publication PeerJ Abbreviated Journal PeerJ
Volume 3 Issue Pages e762
Keywords Agroecosystems; Arable farmland; Economic value; Ecosystem services; Externalities; New Zealand
Abstract Background. Ecosystem services (ES) generated within agricultural landscapes, including field boundaries, are vital for the sustainable supply of food and fibre. However, the value of ES in agriculture has not been quantified experimentally and then extrapolated globally. Methods. We quantified the economic value of two key but contrasting ES (biological control of pests and nitrogen mineralisation) provided by non-traded non-crop species in ten organic and ten conventional arable fields in New Zealand using field experiments. The arable crops grown, same for each organic and conventional pair, were peas (Pisum sativum), beans (Phaseolus vulgaris), barley (Hordeum vulgare), and wheat (Triticum aestivum). Organic systems were chosen as comparators not because they are the only forms of sustainable agriculture, but because they are subject to easily understood standards. Results. We found that organic farming systems depended on fewer external inputs and produced outputs of energy and crop dry matter generally less than but sometimes similar to those of their conventional counterparts. The economic values of the two selected ES were greater for the organic systems in all four crops, ranging from US$ 68-200 ha(-1) yr(-1) for biological control of pests and from US$ 110-425 ha(-1)yr(-1) for N mineralisation in the organic systems versus US$ 0 ha(-1)yr(-1) for biological control of pests and from US$ 60-244 ha(-1)yr(-1) for N mineralisation in the conventional systems. The total economic value (including market and non-market components) was significantly greater in organic systems, ranging from US$ 1750-4536 ha(-1)yr(-1), with US$ 1585-2560 ha(-1)yr(-1) in the conventional systems. The non-market component of the economic value in organic fields was also significantly higher than those in conventional fields. Discussion. To illustrate the potential magnitude of these two ES to temperate farming systems and agricultural landscapes elsewhere, we then extrapolate these experimentally derived figures to the global temperate cropping area of the same arable crops. We found that the extrapolated net value of the these two services provided by non-traded species could exceed the combined current global costs of pesticide and fertiliser inputs, even if utilised on only 10% of the global arable area. This approach strengthens the case for ES-rich agricultural systems, provided by non-traded species to global agriculture.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2167-8359 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4807
Permanent link to this record