|   | 
Details
   web
Records
Author Quain, M.D.; Makgopa, M.E.; Marquez-Garcia, B.; Comadira, G.; Fernandez-Garcia, N.; Olmos, E.; Schnaubelt, D.; Kunert, K.J.; Foyer, C.H.
Title Ectopic phytocystatin expression leads to enhanced drought stress tolerance in soybean (Glycine max) and Arabidopsis thaliana through effects on strigolactone pathways and can also result in improved seed traits Type Journal Article
Year (down) 2014 Publication Plant Biotechnology Journal Abbreviated Journal Plant Biotechnol. J.
Volume 12 Issue 7 Pages 903-913
Keywords Arabidopsis/*genetics/metabolism/physiology; Carbon Dioxide/metabolism; Chlorophyll/metabolism; Cystatins/*genetics/metabolism/physiology; Droughts; Lactones/*metabolism; Oryza/genetics; Phenotype; Plant Proteins/*genetics/metabolism/physiology; Seeds/genetics/metabolism/physiology; Soybeans/*genetics/metabolism/physiology; Stress, Physiological/*genetics; cystatin; cysteine protease; drought tolerance; photosynthesis; seed protein and yield; strigolactone
Abstract Ectopic cystatin expression has long been used in plant pest management, but the cysteine protease, targets of these inhibitors, might also have important functions in the control of plant lifespan and stress tolerance that remain poorly characterized. We therefore characterized the effects of expression of the rice cystatin, oryzacystatin-I (OCI), on the growth, development and stress tolerance of crop (soybean) and model (Arabidopsis thaliana) plants. Ectopic OCI expression in soybean enhanced shoot branching and leaf chlorophyll accumulation at later stages of vegetative development and enhanced seed protein contents and decreased the abundance of mRNAs encoding strigolactone synthesis enzymes. The OCI-expressing A. thaliana showed a slow-growth phenotype, with increased leaf numbers and enhanced shoot branching at flowering. The OCI-dependent inhibition of cysteine proteases enhanced drought tolerance in soybean and A. thaliana, photosynthetic CO2 assimilation being much less sensitive to drought-induced inhibition in the OCI-expressing soybean lines. Ectopic OCI expression or treatment with the cysteine protease inhibitor E64 increased lateral root densities in A. thaliana. E64 treatment also increased lateral root densities in the max2-1 mutants that are defective in strigolactone signalling, but not in the max3-9 mutants that are defective in strigolactone synthesis. Taken together, these data provide evidence that OCI-inhibited cysteine proteases participate in the control of growth and stress tolerance through effects on strigolactones. We conclude that cysteine proteases are important targets for manipulation of plant growth, development and stress tolerance, and also seed quality traits.
Address 2016-06-01
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1467-7644 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4740
Permanent link to this record
 

 
Author Barber, H.M.; Gooding, M.J.; Semenov, M.A.
Title Improving modelling of wheat responses to high temperature stress under climate change Type Conference Article
Year (down) 2014 Publication Abbreviated Journal
Volume Issue Pages
Keywords CropM
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference XIII ESA congress, Debrecen, Hungary, 2014-08-25 to 2014-08-29
Notes Approved no
Call Number MA @ admin @ Serial 2299
Permanent link to this record
 

 
Author Rötter, R.P.; Semenov, M.A.
Title Development of methods for the probabilistic assessment of climate change impacts on crop production Type Report
Year (down) 2014 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 3 Issue Pages D-C4.4.1
Keywords
Abstract Various attempts have been made to determine the relative importance of uncertainties in climate change impact assessments stemming from climate projections and crop models, respectively, and to analyse yield outputs probabilistically. For example, in the ENSEMBLES project, probabilistic climate projections (Harris et al. 2010) have been applied in conjunction with impact response surfaces (IRS), constructed by using impact models, to estimate the future likelihood (risk) of exceeding critical thresholds of crop yield impact (see, Fronzek et al., 2011, for an explanation of the method). In this task, we aimed to further develop and operationalize these methods and testing them in different case study regions in Europe. The method combines results of a sensitivity analysis of (one or more) impact model(s) with probabilistic projections of future temperature and precipitation (Fronzek et al., 2011). Such an overlay is one way of portraying probabilistic estimates of future impacts. By further accounting for the uncertainties in crop and biophysical parameters (using perturbed parameter approaches), the outcome represents an ensemble of impact risk estimates, encapsulating both climate and crop model uncertainties. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2233
Permanent link to this record
 

 
Author Lehtonen, H.S.; Kässi, P.; Korhonen, P.; Niskanen, O.; Rötter, R.; Palosuo, T.; Liu, X.; Purola, T.
Title Specific problems and solutions in climate change adaptation in North Savo region Type Report
Year (down) 2014 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 3 Issue Pages Sp3-10
Keywords
Abstract Crop production for feed dominates land use in North Savo in eastern Finland. The value of dairy and beef production is appr. 70 % of the total value of agricultural production of the region. In climate change adaptation research we are especially interested in dairy and meat sectors, which are directly dependent on the development of productivity of crop production. Climate change implies changes in cereals and forage crop yields and nutritive quality. There are most likely increasing problems and risks related to overwintering and growing periods. Grass silage is mainly self-produced on farms and most often there is no market for silage. Silage production and use are vulnerable to changes in local climate, because lost yield cannot be easily replaced from market. Risks and costs due to increasing inter-annual yield volatility can be reduced by good management practices, such as crop rotation, plant protection, soil improvements and better crop protection against plant diseases.However the profitability of such measures is dependent on market and policy conditions. Nevertheless new cultivars and species, as well as various options for production and risk management, are most likely needed in future climate. Some adaptations may have multiple benefits which however may realize only in medium or long run. It is important to safeguard the most important and obviously needed adaptations, and identify market and socio-economic conditions which inhibit farmers from necessary adaptations and lead to reduced productivity and increased production costs. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2227
Permanent link to this record
 

 
Author Lehtonen, H.S.; Liu, X.; Purola, T.; Rötter, R.; Palosuo, T.
Title Farm level dynamic economic modelling of crop rotation with adaptation practices Type Report
Year (down) 2014 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 3 Issue Pages Sp3-9
Keywords
Abstract Agriculture is facing increasing challenges under volatile commodity markets, on-going climate change with more frequent extreme weather events and tightened environmental constraints. Crop rotation is considered essential and may even gain more importance for sustainable farming in the context of climate change challenges while monocropping is expected to become increasingly problematic. This is, among others, because of increasing plant protection challenges due to warmer climate which is expected to result in severe droughts, heavy rainfall and waterlogging in northern latitudes more frequently. Such changes require improved soil structure and water retention, also aided by crop rotations, to avoid yield losses. Our objective is to build and apply a dynamic optimization model of farm level crop rotation on many field parcels over 30-40 years. The model takes into account various adaptation management methods such as fungicide treatment, soil improvements such as liming, and nitrogen fertilization, simultaneously with dynamic crop rotation choices. However, these management options come along with costs. Using the model, outcomes of crop growth simulation modeling can be included into economic analysis. Simulated new cultivars, suited for a longer growing season, can be defined as alternatives to current cultivars, both having specific nutrient and other input requirements such as water, labor or pesticides. The model is used in evaluating the value of future cultivars and other management practices in climate and socio-economic scenarios. The first results show that expected market prices have major impacts on the management choices, the resulting yield levels, production and income over time. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2226
Permanent link to this record