|   | 
Details
   web
Records
Author Schönhart, M.; Schauppenlehner, T.; Kuttner, M.; Schmid, E.
Title Integrated Assessment of Climate Change Mitigation and Adaptation Impacts at Landscape level: Mostviertel, Austria Type Conference Article
Year (up) 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages SP6-6
Keywords
Abstract ConclusionsIncreasing productivity can increase intensification pressuresThreatened permanent (extensive) grasslands and landscape elements, butsubject to resource constraints, costs and prices andfuture production potential to increase global food supplyFuture RDP and environmental policy design (e.g. WFD) should take changing productivity into accountHeterogeneity matters at farm and regional levelChanging relative competitiveness of farmsFuture research: analyze uncertainties No Label
Address
Corporate Author Thesis
Publisher Place of Publication Brussels Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Climate-change impacts on farming systems in the next decades: Why worry when you have CAP? A FACCE MACSUR workshop for policymakers
Notes Approved no
Call Number MA @ admin @ Serial 2085
Permanent link to this record
 

 
Author Ewert, F.; Rötter, R.; Brüser, K.
Title CropM: Understanding and Modelling Impacts of Climate Change on Crop Production Type Conference Article
Year (up) 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages SP6-2
Keywords
Abstract Key ambition:To developa shared comprehensive information system on the impacts of climate change on European crop production and food securityfirst shared pan-continental assessments and tools(Full) range of important crops and important crop rotationsImproved management and analysis of dataModel improvement (stresses and factors not yet accounted for)Advanced scaling methodsAdvanced link to farm and sector modelsComprehensive uncertainty assessment and reportingTo train integrative crop modelerData. for better understanding and modelling climate change impactEvaluation of data quality (platinum, gold, silver)Quantify data gaps for modellingEmpirical analysis of crop responses to past climate variability and changeObserved adaptation options and their efficacyEffect of extreme events (past analysis and projections)Climate change scenariosConcept for data management, data journalUncertaintyMethodology & protocols for uncertainty analysisMethodology for standardized model evaluationLocal-scale climate scenarios & uncertainties in climate projectionsBasic methodology for probabilistic assessment of CC impacts using impact response surfacesMethodology for probabilistic evaluation of alternative adaptation options Main aims in MACSUR2:Improve crop model to better capture extremesComplement knowledge from crop models with empirical crop-weather analysisConsider management variables in simulationsFull range of methods for analysing uncertainty in climate impact assessmentsEvaluate potential adaptation optionsContributing to cross-cutting issues and case studies.Further the links with other modelling activitiesLink local to European and global responses No Label
Address
Corporate Author Thesis
Publisher Place of Publication Brussels Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Climate-change impacts on farming systems in the next decades: Why worry when you have CAP? A FACCE MACSUR workshop for policymakers
Notes Approved no
Call Number MA @ admin @ Serial 2083
Permanent link to this record
 

 
Author Köchy, M.; Bannink, A.; Banse, M.; Brouwer, F.; Brüser, K.; Ewert, F.; Foyer, C.; Kipling, R.; Rötter, R.; Scollan, N.; Sinabell, F.
Title MACSUR Phase 1 Final Administrative Report: Public release Type Report
Year (up) 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 6 Issue Pages D-H3.5.3
Keywords Hub;
Abstract MACSUR’s foremost charge is improving the methodology for integrative inter-disciplinary modelling of European agriculture. In addition to technical changes, improvements include the involvement of stakeholders for setting research priorities, scenarios (if-then evaluations), and model parameters to more realistic or region-specific values. The Knowledge Hub currently brings together 300 members from 18 countries and has generated 300 scientific papers, over 500 presentations and 20 workshops and conferences within the first three years. Scientific results are communicated in conferences and workshops, where policymakers take part by invitation or because of professional interest. These events also provide opportunities for direct dialogues between policy­makers and scientists. The primary form of output of the research network is scientific publications that are cited in policy documents by relevant administrative depart­ments, ministries, intergovern­mental agencies, and directorate-generals, and non-governmental interest groups. MACSUR members also contribute directly to policy documents as authors, e.g. the EEA’s indicator report on CC impacts or the IPCC’s 5th assessment report’s chapter on food security.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2080
Permanent link to this record
 

 
Author Kirchner, M.; Schmid, E.; Mitter, H.; Schönhart, M.
Title Modeling the Impacts of Climate Change and Market Integration on Agricultural Production and Land Use Management in Austria Type Report
Year (up) 2015 Publication IIASA Interim Report Young Scientists Summer Program Abbreviated Journal
Volume Issue Pages
Keywords TradeM C6 -
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2065
Permanent link to this record
 

 
Author Weindl, I.; Lotze-Campen, H.; Popp, A.; Müller, C.; Havlík, P.; Herrero, M.; Schmitz, C.; Rolinski, S.
Title Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture Type Journal Article
Year (up) 2015 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 10 Issue 9 Pages 094021
Keywords livestock; climate impacts; land use modeling; adaptation costs; production systems; greenhouse-gas emissions; global change; management implications; developing-countries; crop productivity; change mitigation; food security; model; impacts; carbon
Abstract Livestock farming is the world’s largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US$). Shifts in livestock production towards mixed crop-livestock systems represent a resource-and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium Article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4718
Permanent link to this record