|   | 
Details
   web
Records
Author Gutierrez, L.; Piras, F.; Roggero, P.P.
Title A global vector autoregression model for the analysis of wheat export prices Type Journal Article
Year (down) 2015 Publication American Journal of Agricultural Economics Abbreviated Journal American Journal of Agricultural Economics
Volume 97 Issue 5 Pages 1494-1511
Keywords Global dynamic models; price analysis; wheat market; lagged dependent-variables; commodity-markets; error-correction; food-prices; unit-root; regressors; tests; cointegration; dynamics; time
Abstract Food commodity price fluctuations have an important impact on poverty and food insecurity across the world. Conventional models have not provided a complete picture of recent price spikes in agricultural commodity markets, and there is an urgent need for appropriate policy responses. Perhaps new approaches are needed to better understand international spill-overs, the feedback between the real and the financial sectors, as well as the link between food and energy prices. In this article, we present the results from a new worldwide dynamic model that provides the short and long-run impulse responses of the international wheat price to various real and financial shocks.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0002-9092 1467-8276 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4658
Permanent link to this record
 

 
Author McKersie, B.
Title Planning for food security in a changing climate Type Journal Article
Year (down) 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.
Volume 66 Issue 12 Pages 3435-3450
Keywords Adaptation, Physiological; *Climate Change; Crops, Agricultural/growth & development; Droughts; *Food Supply; Zea mays/physiology; Climate change; DroughtGard; cropping systems; drought tolerance; genetic engineering; maize; marker-assisted selection; plant breeding
Abstract The Intergovernmental Panel on Climate Change and other international agencies have concluded that global crop production is at risk due to climate change, population growth, and changing food preferences. Society expects that the agricultural sciences will innovate solutions to these problems and provide food security for the foreseeable future. My thesis is that an integrated research plan merging agronomic and genetic approaches has the greatest probability of success. I present a template for a research plan based on the lessons we have learned from the Green Revolution and from the development of genetically engineered crops that may guide us to meet this expectation. The plan starts with a vision of how the crop management system could change, and I give a few examples of innovations that are very much in their infancy but have significant potential. The opportunities need to be conceptualized on a regional basis for each crop to provide a target for change. The plan gives an overview of how the tools of plant biotechnology can be used to create the genetic diversity needed to implement the envisioned changes in the crop management system, using the development of drought tolerance in maize (Zea mays L.) as an example that has led recently to the commercial release of new hybrids in the USA. The plan requires an interdisciplinary approach that integrates and coordinates research on plant biotechnology, genetics, physiology, breeding, agronomy, and cropping systems to be successful.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-0957 1460-2431 ISBN Medium Review
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4568
Permanent link to this record
 

 
Author von Lampe, M.; Willenbockel, D.; Ahammad, H.; Blanc, E.; Cai, Y.; Calvin, K.; Fujimori, S.; Hasegawa, T.; Havlik, P.; Heyhoe, E.; Kyle, P.; Lotze-Campen, H.; Mason, d’C., Daniel; Nelson, G.C.; Sands, R.D.; Schmitz, C.; Tabeau, A.; Valin, H.; van der Mensbrugghe, D.; van Meijl, H.
Title Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison Type Journal Article
Year (down) 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.
Volume 45 Issue 1 Pages 3-3
Keywords Computable general equilibrium; Partial equilibrium; Meta-analysis; Socioeconomic pathway; Climate change; Bioenergy; Land use; Model; intercomparison; land-use change; food demand; crop productivity; climate-change; future
Abstract Recent studies assessing plausible futures for agricultural markets and global food security have had contradictory outcomes. To advance our understanding of the sources of the differences, 10 global economic models that produce long-term scenarios were asked to compare a reference scenario with alternate socioeconomic, climate change, and bioenergy scenarios using a common set of key drivers. Several key conclusions emerge from this exercise: First, for a comparison of scenario results to be meaningful, a careful analysis of the interpretation of the relevant model variables is essential. For instance, the use of real world commodity prices differs widely across models, and comparing the prices without accounting for their different meanings can lead to misleading results. Second, results suggest that, once some key assumptions are harmonized, the variability in general trends across models declines but remains important. For example, given the common assumptions of the reference scenario, models show average annual rates of changes of real global producer prices for agricultural products on average ranging between -0.4% and +0.7% between the 2005 base year and 2050. This compares to an average decline of real agricultural prices of 4% p.a. between the 1960s and the 2000s. Several other common trends are shown, for example, relating to key global growth areas for agricultural production and consumption. Third, differences in basic model parameters such as income and price elasticities, sometimes hidden in the way market behavior is modeled, result in significant differences in the details. Fourth, the analysis shows that agro-economic modelers aiming to inform the agricultural and development policy debate require better data and analysis on both economic behavior and biophysical drivers. More interdisciplinary modeling efforts are required to cross-fertilize analyses at different scales.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5150 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4822
Permanent link to this record
 

 
Author Sakschewski, B.; von Bloh, W.; Huber, V.; Müller, C.; Bondeau, A.
Title Feeding 10 billion people under climate change: How large is the production gap of current agricultural systems Type Journal Article
Year (down) 2014 Publication Ecological Modelling Abbreviated Journal Ecol. Model.
Volume 288 Issue Pages 103-111
Keywords Population growth; Food production; Dynamic global vegetation model; Climate change; LPJmL; stomatal conductance; population-growth; food-production; co2; enrichment; model; photosynthesis; scenarios; leaves; plants; yield
Abstract The human population is projected to reach more than 10 billion in the year 2100. Together with changing consumption pattern, population growth will lead to increasing food demand. The question arises whether or not the Earth is capable of fulfilling this demand. In this study, we approach this question by estimating the carrying capacity of current agricultural systems (K-C), which does not measure the maximum number of people the Earth is likely to feed in the future, but rather allows for an indirect assessment of the increases in agricultural productivity required to meet demands. We project agricultural food production under progressing climate change using the state-of-the-art dynamic global vegetation model LPJmL, and input data of 3 climate models. For 1990 to 2100 the worldwide annual caloric yield of the most important 11 crop types is simulated. Model runs with and without elevated atmospheric CO2 concentrations are performed in order to investigate CO2 fertilization effects. Country-specific per-capita caloric demands fixed at current levels and changing demands based on future GDP projections are considered to assess the role of future dietary shifts. Our results indicate that current population projections may considerably exceed the maximum number of people that can be fed globally if climate change is not accompanied by significant changes in land use, agricultural efficiencies and/or consumption pathways. We estimate the gap between projected population size and K-C to reach 2 to 6.8 billion people by 2100. We also present possible caloric self-supply changes between 2000 and 2100 for all countries included in this study. The results show that predominantly developing countries in tropical and subtropical regions will experience vast decreases of self-supply. Therefore, this study is important for planning future large-scale agricultural management, as well as the critical assessment of population projections, which should take food-mediated climate change feedbacks into account
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3800 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4806
Permanent link to this record
 

 
Author Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N.; Neumann, K.; Piontek, F.; Pugh, T.A.; Schmid, E.; Stehfest, E.; Yang, H.; Jones, J.W.
Title Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison Type Journal Article
Year (down) 2014 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.
Volume 111 Issue 9 Pages 3268-3273
Keywords Agriculture/*methods/statistics & numerical data; *Climate Change; Computer Simulation; Crops, Agricultural/*growth & development; Forecasting; Geography; *Models, Theoretical; Nitrogen/*analysis; Risk Assessment; Temperature; AgMIP; Isi-mip; agriculture; climate impacts; food security
Abstract Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1091-6490 (Electronic) 0027-8424 (Linking) ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4801
Permanent link to this record