toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ewert, F.; Rötter, R.; Brüser, K. url  openurl
  Title CropM: Understanding and Modelling Impacts of Climate Change on Crop Production Type Conference Article
  Year (down) 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages SP6-2  
  Keywords  
  Abstract Key ambition:To developa shared comprehensive information system on the impacts of climate change on European crop production and food securityfirst shared pan-continental assessments and tools(Full) range of important crops and important crop rotationsImproved management and analysis of dataModel improvement (stresses and factors not yet accounted for)Advanced scaling methodsAdvanced link to farm and sector modelsComprehensive uncertainty assessment and reportingTo train integrative crop modelerData. for better understanding and modelling climate change impactEvaluation of data quality (platinum, gold, silver)Quantify data gaps for modellingEmpirical analysis of crop responses to past climate variability and changeObserved adaptation options and their efficacyEffect of extreme events (past analysis and projections)Climate change scenariosConcept for data management, data journalUncertaintyMethodology & protocols for uncertainty analysisMethodology for standardized model evaluationLocal-scale climate scenarios & uncertainties in climate projectionsBasic methodology for probabilistic assessment of CC impacts using impact response surfacesMethodology for probabilistic evaluation of alternative adaptation options Main aims in MACSUR2:Improve crop model to better capture extremesComplement knowledge from crop models with empirical crop-weather analysisConsider management variables in simulationsFull range of methods for analysing uncertainty in climate impact assessmentsEvaluate potential adaptation optionsContributing to cross-cutting issues and case studies.Further the links with other modelling activitiesLink local to European and global responses No Label  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Brussels Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Climate-change impacts on farming systems in the next decades: Why worry when you have CAP? A FACCE MACSUR workshop for policymakers  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2083  
Permanent link to this record
 

 
Author Köchy, M.; Bannink, A.; Banse, M.; Brouwer, F.; Brüser, K.; Ewert, F.; Foyer, C.; Kipling, R.; Rötter, R.; Scollan, N.; Sinabell, F. url  openurl
  Title MACSUR Phase 1 Final Administrative Report: Public release Type Report
  Year (down) 2015 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume 6 Issue Pages D-H3.5.3  
  Keywords Hub;  
  Abstract MACSUR’s foremost charge is improving the methodology for integrative inter-disciplinary modelling of European agriculture. In addition to technical changes, improvements include the involvement of stakeholders for setting research priorities, scenarios (if-then evaluations), and model parameters to more realistic or region-specific values. The Knowledge Hub currently brings together 300 members from 18 countries and has generated 300 scientific papers, over 500 presentations and 20 workshops and conferences within the first three years. Scientific results are communicated in conferences and workshops, where policymakers take part by invitation or because of professional interest. These events also provide opportunities for direct dialogues between policy­makers and scientists. The primary form of output of the research network is scientific publications that are cited in policy documents by relevant administrative depart­ments, ministries, intergovern­mental agencies, and directorate-generals, and non-governmental interest groups. MACSUR members also contribute directly to policy documents as authors, e.g. the EEA’s indicator report on CC impacts or the IPCC’s 5th assessment report’s chapter on food security.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2080  
Permanent link to this record
 

 
Author Kirchner, M.; Schmid, E.; Mitter, H.; Schönhart, M. openurl 
  Title Modeling the Impacts of Climate Change and Market Integration on Agricultural Production and Land Use Management in Austria Type Report
  Year (down) 2015 Publication IIASA Interim Report Young Scientists Summer Program Abbreviated Journal  
  Volume Issue Pages  
  Keywords TradeM C6 -  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 2065  
Permanent link to this record
 

 
Author Weindl, I.; Lotze-Campen, H.; Popp, A.; Müller, C.; Havlík, P.; Herrero, M.; Schmitz, C.; Rolinski, S. url  doi
openurl 
  Title Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture Type Journal Article
  Year (down) 2015 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 10 Issue 9 Pages 094021  
  Keywords livestock; climate impacts; land use modeling; adaptation costs; production systems; greenhouse-gas emissions; global change; management implications; developing-countries; crop productivity; change mitigation; food security; model; impacts; carbon  
  Abstract Livestock farming is the world’s largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US$). Shifts in livestock production towards mixed crop-livestock systems represent a resource-and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4718  
Permanent link to this record
 

 
Author Zhao, G.; Webber, H.; Hoffmann, H.; Wolf, J.; Siebert, S.; Ewert, F. doi  openurl
  Title The implication of irrigation in climate change impact assessment: a European-wide study Type Journal Article
  Year (down) 2015 Publication Global Change Biology Abbreviated Journal Glob. Chang. Biol.  
  Volume 21 Issue 11 Pages 4031-4048  
  Keywords CO2 effects; Lintul; Simplace; climate change; crop model; irrigation; water availability; yield change  
  Abstract This study evaluates the impacts of projected climate change on irrigation requirements and yields of six crops (winter wheat, winter barley, rapeseed, grain maize, potato, and sugar beet) in Europe. Furthermore, the uncertainty deriving from consideration of irrigation, CO2 effects on crop growth and transpiration, and different climate change scenarios in climate change impact assessments is quantified. Net irrigation requirement (NIR) and yields of the six crops were simulated for a baseline (1982-2006) and three SRES scenarios (B1, B2 and A1B, 2040-2064) under rainfed and irrigated conditions, using a process-based crop model, SIMPLACE <LINTUL5, DRUNIR, HEAT>. We found that projected climate change decreased NIR of the three winter crops in northern Europe (up to 81 mm), but increased NIR of all the six crops in the Mediterranean regions (up to 182 mm yr(-1)). Climate change increased yields of the three winter crops and sugar beet in middle and northern regions (up to 36%), but decreased their yields in Mediterranean countries (up to 81%). Consideration of CO2 effects can alter the direction of change in NIR for irrigated crops in the south and of yields for C3 crops in central and northern Europe. Constraining the model to rainfed conditions for spring crops led to a negative bias in simulating climate change impacts on yields (up to 44%), which was proportional to the irrigation ratio of the simulation unit. Impacts on NIR and yields were generally consistent across the three SRES scenarios for the majority of regions in Europe. We conclude that due to the magnitude of irrigation and CO2 effects, they should both be considered in the simulation of climate change impacts on crop production and water availability, particularly for crops and regions with a high proportion of irrigated crop area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1354-1013 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4716  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: