toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bellocchi, G.; Rivington, M.; Matthews, K.; Acutis, M. url  doi
openurl 
  Title Deliberative processes for comprehensive evaluation of agroecological models. A review Type Journal Article
  Year (down) 2015 Publication Agronomy for Sustainable Development Abbreviated Journal Agron. Sust. Developm.  
  Volume 35 Issue 2 Pages 589-605  
  Keywords component-oriented programing; deliberative approach; modeling; model evaluation; multiple metrics; stakeholders; decision-support-systems; environmental-models; performance evaluation; groundwater models; farming systems; climate-change; irene-dll; simulation; validation; integration  
  Abstract The use of biophysical models in agroecology has increased in the last few decades for two main reasons: the need to formalize empirical knowledge and the need to disseminate model-based decision support for decision makers (such as farmers, advisors, and policy makers). The first has encouraged the development and use of mathematical models to enhance the efficiency of field research through extrapolation beyond the limits of site, season, and management. The second reflects the increasing need (by scientists, managers, and the public) for simulation experimentation to explore options and consequences, for example, future resource use efficiency (i.e., management in sustainable intensification), impacts of and adaptation to climate change, understanding market and policy responses to shocks initiated at a biophysical level under increasing demand, and limited supply capacity. Production concerns thus dominate most model applications, but there is a notable growing emphasis on environmental, economic, and policy dimensions. Identifying effective methods of assessing model quality and performance has become a challenging but vital imperative, considering the variety of factors influencing model outputs. Understanding the requirements of stakeholders, in respect of model use, logically implies the need for their inclusion in model evaluation methods. We reviewed the use of metrics of model evaluation, with a particular emphasis on the involvement of stakeholders to expand horizons beyond conventional structured, numeric analyses. Two major topics are discussed: (1) the importance of deliberative processes for model evaluation, and (2) the role computer-aided techniques may play to integrate deliberative processes into the evaluation of agroecological models. We point out that (i) the evaluation of agroecological models can be improved through stakeholder follow-up, which is a key for the acceptability of model realizations in practice, (ii) model credibility depends not only on the outcomes of well-structured, numerically based evaluation, but also on less tangible factors that may need to be addressed using complementary deliberative processes, (iii) comprehensive evaluation of simulation models can be achieved by integrating the expectations of stakeholders via a weighting system of preferences and perception, (iv) questionnaire-based surveys can help understand the challenges posed by the deliberative process, and (v) a benefit can be obtained if model evaluation is conceived in a decisional perspective and evaluation techniques are developed at the same pace with which the models themselves are created and improved. Scientific knowledge hubs are also recognized as critical pillars to advance good modeling practice in relation to model evaluation (including access to dedicated software tools), an activity which is frequently neglected in the context of time-limited framework programs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1774-0746 1773-0155 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4551  
Permanent link to this record
 

 
Author Mitter, H.; Schmid, E.; Sinabell, F. url  doi
openurl 
  Title Integrated modelling of protein crop production responses to climate change and agricultural policy scenarios in Austria Type Journal Article
  Year (down) 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 205-220  
  Keywords Climate change impact; Adaptation; Soybean; EPIC; Common Agricultural Policy; Land use  
  Abstract Climate and policy changes are likely to affect protein crop production and thus trade balances in Europe, which is highly dependent on imports. Exemplified for Austrian cropland, we developed an integrated modelling framework to analyze climate change and policy scenario impacts on protein crop production and environmental outcomes. The integrated modelling framework consists of a statistical climate change model, a crop rotation model, the bio-physical process model EPIC, and the economic bottom-up land use optimization model BiomAT. EPIC is applied to simulate annual dry matter crop yields for different crop management practices including crop rotations, fertilization intensities, and irrigation, as well as for 3 regional climate change scenarios until 2040 at a 1 km grid resolution. BiomAT maximizes total gross margins by optimizing land use choices and crop management practices subject to spatially explicit cropland endowments. The model results indicate that changes in agricultural policy conditions, cropland use, and higher flexibility in crop management practices may reduce protein import dependence under changing climatic conditions. Expanding protein crop production is most attractive in south-eastern Austria with its Central European continental climate where maize is most often replaced in crop rotations. However, the acreage of protein crops is limited by agronomically suitable cropland. An intended side effect is the reduction of nitrogen fertilizer inputs by about 0.1% if total protein crop production increases by 1%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5012  
Permanent link to this record
 

 
Author von Lampe, M.; Willenbockel, D.; Ahammad, H.; Blanc, E.; Cai, Y.; Calvin, K.; Fujimori, S.; Hasegawa, T.; Havlik, P.; Heyhoe, E.; Kyle, P.; Lotze-Campen, H.; Mason, d’C., Daniel; Nelson, G.C.; Sands, R.D.; Schmitz, C.; Tabeau, A.; Valin, H.; van der Mensbrugghe, D.; van Meijl, H. doi  openurl
  Title Why do global long-term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison Type Journal Article
  Year (down) 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.  
  Volume 45 Issue 1 Pages 3-3  
  Keywords Computable general equilibrium; Partial equilibrium; Meta-analysis; Socioeconomic pathway; Climate change; Bioenergy; Land use; Model; intercomparison; land-use change; food demand; crop productivity; climate-change; future  
  Abstract Recent studies assessing plausible futures for agricultural markets and global food security have had contradictory outcomes. To advance our understanding of the sources of the differences, 10 global economic models that produce long-term scenarios were asked to compare a reference scenario with alternate socioeconomic, climate change, and bioenergy scenarios using a common set of key drivers. Several key conclusions emerge from this exercise: First, for a comparison of scenario results to be meaningful, a careful analysis of the interpretation of the relevant model variables is essential. For instance, the use of real world commodity prices differs widely across models, and comparing the prices without accounting for their different meanings can lead to misleading results. Second, results suggest that, once some key assumptions are harmonized, the variability in general trends across models declines but remains important. For example, given the common assumptions of the reference scenario, models show average annual rates of changes of real global producer prices for agricultural products on average ranging between -0.4% and +0.7% between the 2005 base year and 2050. This compares to an average decline of real agricultural prices of 4% p.a. between the 1960s and the 2000s. Several other common trends are shown, for example, relating to key global growth areas for agricultural production and consumption. Third, differences in basic model parameters such as income and price elasticities, sometimes hidden in the way market behavior is modeled, result in significant differences in the details. Fourth, the analysis shows that agro-economic modelers aiming to inform the agricultural and development policy debate require better data and analysis on both economic behavior and biophysical drivers. More interdisciplinary modeling efforts are required to cross-fertilize analyses at different scales.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-5150 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4822  
Permanent link to this record
 

 
Author Siebert, S.; Ewert, F.; Rezaei, E.E.; Kage, H.; Grass, R. url  doi
openurl 
  Title Impact of heat stress on crop yield-on the importance of considering canopy temperature Type Journal Article
  Year (down) 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 9 Issue 4 Pages  
  Keywords heat stress; crop yield; temperature; soil moisture; modelling; wheat; rye; harvest index; wheat yields; climate-change; winter-wheat; grain number; extreme heat; maize; variability; irrigation; drought  
  Abstract Increasing crop productivity while simultaneously reducing the environmental footprint of crop production is considered a major challenge for the coming decades. Even short episodes of heat stress can reduce crop yield considerably causing low resource use efficiency. Studies on the impact of heat stress on crop yields over larger regions generally rely on temperatures measured by standard weather stations at 2 m height. Canopy temperatures measured in this study in field plots of rye were up to 7 degrees C higher than air temperature measured at typical weather station height with the differences in temperatures controlled by soil moisture contents. Relationships between heat stress and grain number derived from controlled environment studies were only confirmed under field conditions when canopy temperature was used to calculate stress thermal time. By using hourly mean temperatures measured by 78 weather stations located across Germany for the period 1994-2009 it is estimated, that mean yield declines in wheat due to heat stress during flowering were 0.7% when temperatures are measured at 2 m height, but yield declines increase to 22% for temperatures measured at the ground. These results suggest that canopy temperature should be simulated or estimated to reduce uncertainty in assessing heat stress impacts on crop yield.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4814  
Permanent link to this record
 

 
Author Siebert, S.; Ewert, F. url  doi
openurl 
  Title Future crop production threatened by extreme heat Type Journal Article
  Year (down) 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 9 Issue 4 Pages  
  Keywords climate-change; simulation-models; wheat yields; day length; temperature; growth; impact; co2; phenology; patterns  
  Abstract Heat is considered to be a major stress limiting crop growth and yields. While important findings on the impact of heat on crop yield have been made based on experiments in controlled environments, little is known about the effects under field conditions at larger scales. The study of Deryng et al (2014 Global crop yield response to extreme heat stress under multiple climate change futures Environ. Res. Lett. 9 034011), analysing the impact of heat stress on maize, spring wheat and soya bean under climate change, represents an important contribution to this emerging research field. Uncertainties in the occurrence of heat stress under field conditions, plant responses to heat and appropriate adaptation measures still need further investigation.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4813  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: