|   | 
Details
   web
Records
Author Zhao, G.; Hoffmann, H.; van Bussel, L.G.J.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.L.; Constantin, J.; Raynal, H.; Teixeira, E.; Grosz, B.; Doro, L.; Zhao, Z.G.; Nendel, C.; Kiese, R.; Eckersten, H.; Haas, E.; Vanuytrecht, E.; Wang, E.; Kuhnert, M.; Trombi, G.; Moriondo, M.; Bindi, M.; Lewan, E.; Bach, M.; Kersebaum, K.C.; Rotter, R.; Roggero, P.P.; Wallach, D.; Cammarano, D.; Asseng, S.; Krauss, G.; Siebert, S.; Gaiser, T.; Ewert, F.
Title Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables Type Journal Article
Year (down) 2015 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 65 Issue Pages 141-157
Keywords crop model; model comparison; spatial resolution; data aggregation; spatial heterogeneity; scaling; climate-change scenarios; sub-saharan africa; winter-wheat; spatial-resolution; yield response; input data; systems simulation; large-scale; soil data; part i
Abstract We assessed the weather data aggregation effect (DAE) on the simulation of cropping systems for different crops, response variables, and production conditions. Using 13 process-based crop models and the ensemble mean, we simulated 30 yr continuous cropping systems for 2 crops (winter wheat and silage maize) under 3 production conditions for the state of North Rhine-Westphalia, Germany. The DAE was evaluated for 5 weather data resolutions (i.e. 1, 10, 25, 50, and 100 km) for 3 response variables including yield, growing season evapotranspiration, and water use efficiency. Five metrics, viz. the spatial bias (Delta), average absolute deviation (AAD), relative AAD, root mean squared error (RMSE), and relative RMSE, were used to evaluate the DAE on both the input weather data and simulated results. For weather data, we found that data aggregation narrowed the spatial variability but widened the., especially across mountainous areas. The DAE on loss of spatial heterogeneity and hotspots was stronger than on the average changes over the region. The DAE increased when coarsening the spatial resolution of the input weather data. The DAE varied considerably across different models, but changed only slightly for different production conditions and crops. We conclude that if spatially detailed information is essential for local management decision, higher resolution is desirable to adequately capture the spatial variability for heterogeneous regions. The required resolution depends on the choice of the model as well as the environmental condition of the study area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577x ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4754
Permanent link to this record
 

 
Author Ewert, F.; van Bussel, L.G.J.; Zhao, G.; Hoffmann, H.; Gaiser, T.; Specka, X.; Nendel, C.; Kersebaum, K.-C.; Sosa, C.; Lewan, E.; Yeluripati, J.; Kuhnert, M.; Tao, F.; Rötter, R.P.; Constantin, J.; Raynal, H.; Wallach, D.; Teixeira, E.; Grosz, B.; Bach, M.; Doro, L.; Roggero, P.P.; Zhao, Z.; Wang, E.; Kiese, R.; Haas, E.; Eckersten, H.; Trombi, G.; Bindi, M.; Klein, C.; Biernath, C.; Heinlein, F.; Priesack, E.; Cammarano, D.; Asseng, S.; Elliott, J.; Glotter, M.; Basso, B.; Baigorria, G.A.; Romero, C.C.; Moriondo, M.
Title Uncertainties in Scaling up Crop Models for Large Area Climate-change Impact Assessments Type Book Chapter
Year (down) 2015 Publication Abbreviated Journal
Volume Issue Pages 261-277
Keywords CropM;
Abstract
Address
Corporate Author Thesis
Publisher Imperial College Press Place of Publication London Editor Rosenzweig, C.; Hillel, D.
Language Summary Language Original Title
Series Editor Series Title Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project (AgMIP) Integrated Crop and Economic Assessments — Joint Publication with American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America (In 2 Parts) Abbreviated Series Title
Series Volume ICP Series on Climate Change Impacts, Adaptation, Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number MA @ admin @ Serial 2427
Permanent link to this record
 

 
Author Grosz, B.
Title The implication of input data aggregation on upscaling of soil organic carbon changes Type
Year (down) 2015 Publication FACCE MACSUR Reports Abbreviated Journal
Volume 5 Issue Pages Sp5-19
Keywords
Abstract In regionalization studies the spatial resolution of driving data is often restricted by data availability or limited computational capacity. Method and level of spatial driver aggregation in upscaling studies are sources of uncertainty and might bias aggregated model results. The suitability of upscaled model results using aggregated driving data depends on both the sensitivity of the model to these model drivers and the scale of interest to which the model output will be aggregated. An important component of soil plant atmosphere systems is the soil organic matter content influencing GHG emissions and the soil fertility of croplands.The implications of driver aggregation schemes on different system properties of croplands have been examined in a scaling exercise within the joint research project MACSUR. In this study, meteorological driving data and data on soil properties on several aggregation levels have been used to calculate the organic carbon change of cropland soils of North Rhine-Westphalia with an ensemble of biogeochemical models.The results of this scaling exercise show that the aggregation of meteorological data has little impact on modeled soil organic carbon changes. However, model uncertainty increases slightly with decreasing scale of interest from NUTS 2 level to smaller grid cell size. Conversely, the aggregation of soil properties resulted in high uncertainty ranges constraining the predictable scale of interest for all models. The study gives an indication on adequate spatial aggregation schemes in dependence on the scope of regionalization studies addressing soil organic carbon changes. No Label
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference 2015 »Integrated Climate Risk Assessment in Agriculture & Food«, 8–9+10 April 2015, Reading, UK
Notes Approved no
Call Number MA @ admin @ Serial 2134
Permanent link to this record
 

 
Author Hoffmann, H.; Zhao, G.; van Bussel, L.G.J.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Raynal, H.; Teixeira, E.; Grosz, B.; Doro, L.; Zhao, Z.; Wang, E.; Nendel, C.; Kersebaum, K.C.; Haas, E.; Kiese, R.; Klatt, S.; Eckersten, H.; Vanuytrecht, E.; Kuhnert, M.; Lewan, E.; Rötter, R.; Roggero, P.P.; Wallach, D.; Cammarano, D.; Asseng, S.; Krauss, G.; Siebert, S.; Gaiser, T.; Ewert, F.
Title Variability of effects of spatial climate data aggregation on regional yield simulation by crop models Type Journal Article
Year (down) 2015 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 65 Issue Pages 53-69
Keywords spatial aggregation effects; crop simulation model; input data; scaling; variability; yield simulation; model comparison; input data aggregation; systems simulation; nitrogen dynamics; data resolution; n2o emissions; winter-wheat; scale; water; impact; apsim
Abstract Field-scale crop models are often applied at spatial resolutions coarser than that of the arable field. However, little is known about the response of the models to spatially aggregated climate input data and why these responses can differ across models. Depending on the model, regional yield estimates from large-scale simulations may be biased, compared to simulations with high-resolution input data. We evaluated this so-called aggregation effect for 13 crop models for the region of North Rhine-Westphalia in Germany. The models were supplied with climate data of 1 km resolution and spatial aggregates of up to 100 km resolution raster. The models were used with 2 crops (winter wheat and silage maize) and 3 production situations (potential, water-limited and nitrogen-water-limited growth) to improve the understanding of errors in model simulations related to data aggregation and possible interactions with the model structure. The most important climate variables identified in determining the model-specific input data aggregation on simulated yields were mainly related to changes in radiation (wheat) and temperature (maize). Additionally, aggregation effects were systematic, regardless of the extent of the effect. Climate input data aggregation changed the mean simulated regional yield by up to 0.2 t ha(-1), whereas simulated yields from single years and models differed considerably, depending on the data aggregation. This implies that large-scale crop yield simulations are robust against climate data aggregation. However, large-scale simulations can be systematically biased when being evaluated at higher temporal or spatial resolution depending on the model and its parameterization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577x 1616-1572 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4694
Permanent link to this record
 

 
Author Hoffmann, H.; Zhao, G.; Constantin, J.; Raynal, H.; Wallach, D.; Coucheney, E.; Sosa, C.; Lewan, E.; Eckersten, H.; Specka, X.; Kersebaum, K.-C.; Nendel, C.; Grosz, B.; Dechow, R.; Kuhnert, M.; Yeluripati, J.; Kiese, R.; Haas, E.; Klatt, S.; Teixeira, E.; Bindi, M.; Trombi, G.; Moriondo, M.; Doro, L.; Roggero, P.P.; Zhao, Z.; Wang, E.; Vanuytrecht, E.; Tao, F.; Rötter, R.; Cammarano, D.; Asseng, S.; Weihermüller, L.; Siebert, S.; Gaiser, T.; Ewert, F.
Title Effects of soil and climate input data aggregation on modelling regional crop yields Type Conference Article
Year (down) 2015 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title MACSUR Science Conference
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MACSUR Science Conference, 2015-04-08 to 2015-04-10, Reading, United Kingdom
Notes Approved no
Call Number MA @ admin @ Serial 5037
Permanent link to this record