toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kriegler, E.; Bauer, N.; Popp, A.; Humpenöder, F.; Leimbach, M.; Strefler, J.; Baumstark, L.; Bodirsky, B.L.; Hilaire, J.; Klein, D.; Mouratiadou, I.; Weindl, I.; Bertram, C.; Dietrich, J.-P.; Luderer, G.; Pehl, M.; Pietzcker, R.; Piontek, F.; Lotze-Campen, H.; Biewald, A.; Bonsch, M.; Giannousakis, A.; Kreidenweis, U.; Müller, C.; Rolinski, S.; Schultes, A.; Schwanitz, J.; Stevanovic, M.; Calvin, K.; Emmerling, J.; Fujimori, S.; Edenhofer, O. url  doi
openurl 
  Title Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century Type Journal Article
  Year (up) 2017 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 42 Issue Pages 297-315  
  Keywords Shared Socio-economic Pathway; SSP5; Emission scenario; Energy transformation; Land-use change; Integrated assessment modeling  
  Abstract Highlights • The SSP5 scenarios mark the upper end of the scenario literature in fossil fuel use, food demand, energy use and greenhouse gas emissions. • The SSP5 marker scenario results in a radiative forcing pathway close to the highest Representative Concentration Pathway (RCP8.5). • An investigation of mitigation policies in SSP5 confirms high socio-economic challenges to mitigation in SSP5. • In SSP5, ambitious climate targets require land based carbon management options such as avoided deforestation and bioenergy production with CCS. • The SSP5 scenarios provide useful reference points for future climate change, impact, adaption, mitigation and sustainable development analysis. Abstract This paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 baseline scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, marking the upper end of the scenario literature in several dimensions. These scenarios are currently the only SSP scenarios that result in a radiative forcing pathway as high as the highest Representative Concentration Pathway (RCP8.5). This paper further investigates the direct impact of mitigation policies on the SSP5 energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. The SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5005  
Permanent link to this record
 

 
Author Zhang, S.; Tao, F.; Zhang, Z. doi  openurl
  Title Uncertainty from model structure is larger than that from model parameters in simulating rice phenology in China Type Journal Article
  Year (up) 2017 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.  
  Volume 87 Issue Pages 30-39  
  Keywords Crop model, Extreme weather, Impacts, Rice development rate, Uncertainty; Climate-Change; Growth Duration; Crop Model; Ceres-Rice; Wheat; Temperature; Impact; Yield; Optimization; Performance  
  Abstract Rice models have been widely used in simulating and predicting rice phenology in contrasting climate zones, however the uncertainties from model structure (different equations or models) and/or model parameters were rarely investigated. Here, five rice phenological models/modules (Le., CERES-Rice, ORYZA2000, RCM, Beta Model and SIMRIW) were applied to simulate rice phenology at 23 experimental stations from 1992 to 2009 in two major rice cultivation regions of China: the northeastern China and the southwestern China. To investigate the uncertainties from model biophysical parameters, each model was run with randomly perturbed 50 sets of parameters. The results showed that the median of ensemble simulations were better than the simulation by most models. Models couldn’t simulate well in some specific years despite of parameters optimization, suggesting model structure limit model performance in some cases. The models adopting accumulative thermal time function (e.g., CERES-Rice and ORYZA2000) had better performance in the southwestern China, in contrast, those adopting exponential function (e.g., Beta model and RCM model) had better performance in the northeastern China. In northeastern China, the contribution of model structure and model parameters to model total variance was, respectively, about 55.90% and 44.10% in simulating heading date, and about 75.43% and 24.57% in simulating maturity date. In the southwestern China, the contribution of model structure and model parameters to model total variance was, respectively, about 79.97% and 27.03% in simulating heading date, about 92.15% and 7.85% in simulating maturity date. Uncertainty from model structure was the most relevant source. The results highlight that the temperature response functions of rice development rate under extreme climate conditions should be improved based on environment-controlled experimental data.  
  Address 2017-08-07  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5170  
Permanent link to this record
 

 
Author Makowski, D. doi  openurl
  Title A simple Bayesian method for adjusting ensemble of crop model outputs to yield observations Type Journal Article
  Year (up) 2017 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.  
  Volume 88 Issue Pages 76-83  
  Keywords Bayesian method; Climate change; Ensemble modelling; Uncertainty; Yield; Linear-Approach; Climate-Change; CO2  
  Abstract Multi-model forecasting has drawn some attention in crop science for evaluating effect of climate change on crop yields. The principle is to run several individual process-based crop models under several climate scenarios in order to generate ensembles of output values. This paper describes a simple Bayesian method – called Bayes linear method- for updating ensemble of crop model outputs using yield observations. The principle is to summarize the ensemble of crop model outputs by its mean and variance, and then to adjust these two quantities to yield observations in order to reduce uncertainty. The adjusted mean and variance combine two sources of information, i.e., the ensemble of crop model outputs and the observations. Interestingly, with this method, observations collected under a given climate scenario can be used to adjust mean and variance of the model ensemble under a different scenario. Another advantage of the proposed method is that it does not rely on a separate calibration of each individual crop model. The uncertainty reduction resulting from the adjustment of an ensemble of crop models to observations was assessed in a numerical application. The implementation of the Bayes linear method systematically reduced uncertainty, but the results showed the effectiveness of this method varied in function of several factors, especially the accuracy of the yield observation, and the covariance between the crop model output and the observation. (C) 2015 Elsevier B.V. All rights reserved.  
  Address 2017-08-07  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5171  
Permanent link to this record
 

 
Author Özkan Gülzari, Ş.; Åby, B.A.; Persson, T.; Höglind, M.; Mittenzwei, K. doi  openurl
  Title Combining models to estimate the impacts of future climate scenarios on feed supply, greenhouse gas emissions and economic performance on dairy farms in Norway Type Journal Article
  Year (up) 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 157 Issue Pages 157-169  
  Keywords Climate change; Dairy farming; Dry matter yield; Economics; Greenhouse gas emission; Modelling  
  Abstract • This study combines crop, livestock and economic models.

• Models interaction is through use of relevant input and output variables.

• Future climate change will result in increased grass and wheat dry matter yields.

• Changes in grass, wheat and milk yields in future reduce farm emissions intensity.

• Changes in future dry matter yields and emissions lead to increased profitability.

There is a scientific consensus that the future climate change will affect grass and crop dry matter (DM) yields. Such yield changes may entail alterations to farm management practices to fulfill the feed requirements and reduce the farm greenhouse gas (GHG) emissions from dairy farms. While a large number of studies have focused on the impacts of projected climate change on a single farm output (e.g. GHG emissions or economic performance), several attempts have been made to combine bio-economic systems models with GHG accounting frameworks. In this study, we aimed to determine the physical impacts of future climate scenarios on grass and wheat DM yields, and demonstrate the effects such changes in future feed supply may have on farm GHG emissions and decision-making processes. For this purpose, we combined four models: BASGRA and CSM-CERES-Wheat models for simulating forage grass DM and wheat DM grain yields respectively; HolosNor for estimating the farm GHG emissions; and JORDMOD for calculating the impacts of changes in the climate and management on land use and farm economics. Four locations, with varying climate and soil conditions were included in the study: south-east Norway, south-west Norway, central Norway and northern Norway. Simulations were carried out for baseline (1961–1990) and future (2046–2065) climate conditions (projections based on two global climate models and the Special Report on Emissions Scenarios (SRES) A1B GHG emission scenario), and for production conditions with and without a milk quota. The GHG emissions intensities (kilogram carbon dioxide equivalent: kgCO2e emissions per kg fat and protein corrected milk: FPCM) varied between 0.8 kg and 1.23 kg CO2e (kg FPCM)− 1, with the lowest and highest emissions found in central Norway and south-east Norway, respectively. Emission intensities were generally lower under future compared to baseline conditions due mainly to higher future milk yields and to some extent to higher crop yields. The median seasonal above-ground timothy grass yield varied between 11,000 kg and 16,000 kg DM ha− 1 and was higher in all projected future climate conditions than in the baseline. The spring wheat grain DM yields simulated for the same weather conditions within each climate projection varied between 2200 kg and 6800 kg DM ha− 1. Similarly, the farm profitability as expressed by total national land rents varied between 1900 million Norwegian krone (NOK) for median yields under baseline climate conditions up to 3900 million NOK for median yield under future projected climate conditions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language phase 2 Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CropM, LiveM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5172  
Permanent link to this record
 

 
Author Challinor, A.J.; Müller, C.; Asseng, S.; Deva, C.; Nicklin, K.J.; Wallach, D.; Vanuytrecht, E.; Whitfield, S.; Ramirez-Villegas, J.; Koehler, A.-K. url  doi
openurl 
  Title Improving the use of crop models for risk assessment and climate change adaptation Type Journal Article
  Year (up) 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 159 Issue Pages 296-306  
  Keywords Crop model; Risk assessment; Climate change impacts; Adaptation; Climate models; Uncertainty  
  Abstract Highlights

• 14 criteria for use of crop models in assessments of impacts, adaptation and risk • Working with stakeholders to identify timing of risks is key to risk assessments. • Multiple methods needed to critically assess the use of climate model output • Increasing transparency and inter-comparability needed in risk assessments

Abstract

Crop models are used for an increasingly broad range of applications, with a commensurate proliferation of methods. Careful framing of research questions and development of targeted and appropriate methods are therefore increasingly important. In conjunction with the other authors in this special issue, we have developed a set of criteria for use of crop models in assessments of impacts, adaptation and risk. Our analysis drew on the other papers in this special issue, and on our experience in the UK Climate Change Risk Assessment 2017 and the MACSUR, AgMIP and ISIMIP projects. The criteria were used to assess how improvements could be made to the framing of climate change risks, and to outline the good practice and new developments that are needed to improve risk assessment. Key areas of good practice include: i. the development, running and documentation of crop models, with attention given to issues of spatial scale and complexity; ii. the methods used to form crop-climate ensembles, which can be based on model skill and/or spread; iii. the methods used to assess adaptation, which need broadening to account for technological development and to reflect the full range options available. The analysis highlights the limitations of focussing only on projections of future impacts and adaptation options using pre-determined time slices. Whilst this long-standing approach may remain an essential component of risk assessments, we identify three further key components: 1. Working with stakeholders to identify the timing of risks. What are the key vulnerabilities of food systems and what does crop-climate modelling tell us about when those systems are at risk? 2. Use of multiple methods that critically assess the use of climate model output and avoid any presumption that analyses should begin and end with gridded output. 3. Increasing transparency and inter-comparability in risk assessments. Whilst studies frequently produce ranges that quantify uncertainty, the assumptions underlying these ranges are not always clear. We suggest that the contingency of results upon assumptions is made explicit via a common uncertainty reporting format; and/or that studies are assessed against a set of criteria, such as those presented in this paper.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language phase 2+ Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308521x ISBN Medium  
  Area CropM Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5175  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: