|   | 
Details
   web
Records
Author Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B.L.; Dietrich, J.P.; Doelmann, J.C.; Gusti, M.; Hasegawa, T.; Kyle, P.; Obersteiner, M.; Tabeau, A.; Takahashi, K.; Valin, H.; Waldhoff, S.; Weindl, I.; Wise, M.; Kriegler, E.; Lotze-Campen, H.; Fricko, O.; Riahi, K.; Vuuren, D.P. van
Title Land-use futures in the shared socio-economic pathways Type Journal Article
Year 2017 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change
Volume (down) 42 Issue Pages 331-345
Keywords Scenarios; Land use; Emissions; Mitigation; Food prices; Integrated assessment; SSP
Abstract • Narratives for the Shared Socio-Economic Pathways (SSPs) focusing on the land sector are presented. • Integrated Assessment Models have been applied for the SSPs to assess potential future developments for land use, greenhouse gas emissions, food provision and prices. • Model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures. • SSP-based land use pathways aim at supporting future climate research, climate impact analysis, biodiversity research and sustainability science. Abstract In the future, the land system will be facing new intersecting challenges. While food demand, especially for resource-intensive livestock based commodities, is expected to increase, the terrestrial system has large potentials for climate change mitigation through improved agricultural management, providing biomass for bioenergy, and conserving or even enhancing carbon stocks of ecosystems. However, uncertainties in future socio-economic land use drivers may result in very different land-use dynamics and consequences for land-based ecosystem services. This is the first study with a systematic interpretation of the Shared Socio-Economic Pathways (SSPs) in terms of possible land-use changes and their consequences for the agricultural system, food provision and prices as well as greenhouse gas emissions. Therefore, five alternative Integrated Assessment Models with distinctive land-use modules have been used for the translation of the SSP narratives into quantitative projections. The model results reflect the general storylines of the SSPs and indicate a broad range of potential land-use futures with global agricultural land of 4900 mio ha in 2005 decreasing by 743 mio ha until 2100 at the lower (SSP1) and increasing by 1080 mio ha (SSP3) at the upper end. Greenhouse gas emissions from land use and land use change, as a direct outcome of these diverse land-use dynamics, and agricultural production systems differ strongly across SSPs (e.g. cumulative land use change emissions between 2005 and 2100 range from −54 to 402 Gt CO2). The inclusion of land-based mitigation efforts, particularly those in the most ambitious mitigation scenarios, further broadens the range of potential land futures and can strongly affect greenhouse gas dynamics and food prices. In general, it can be concluded that low demand for agricultural commodities, rapid growth in agricultural productivity and globalized trade, all most pronounced in a SSP1 world, have the potential to enhance the extent of natural ecosystems, lead to lowest greenhouse gas emissions from the land system and decrease food prices over time. The SSP-based land use pathways presented in this paper aim at supporting future climate research and provide the basis for further regional integrated assessments, biodiversity research and climate impact analysis.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-3780 ISBN Medium
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 5006
Permanent link to this record
 

 
Author Bennetzen, E.H.; Smith, P.; Soussana, J.-F.; Porter, J.R.
Title Identity-based estimation of greenhouse gas emissions from crop production: case study from Denmark Type Journal Article
Year 2012 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume (down) 41 Issue Pages 66-72
Keywords kaya identity; kaya-porter identity; crop production; greenhouse gas emission; energy intensity; mitigation; food system; agriculture; mitigation; energy; opportunities; inventory; europe; policy; land
Abstract In order to feed the world we need innovative thinking on how to increase agricultural production whilst also mitigating climate change. Agriculture and land-use change are responsible for approximately one-third of total anthropogenic greenhouse gas (GHG) emissions but hold potential for climate change mitigation but are only tangentially included in UNFCCC mitigation policies. To get a full estimate of GHG emissions from agricultural crop production both energy-based emissions and land-based emissions need to be accounted for. Furthermore, the major mitigation potential is likely to be indirect reduction of emissions i.e. reducing emissions per unit of agricultural product rather than the absolute emissions per se. Hence the system productivity must be included in the same analysis. This paper presents the Kaya-Porter identity, derived from the Maya identity, as a new way to calculate GHG emissions from agricultural crop production by deconstructing emissions into five elements; the GHG intensity of the energy used for production (kg CO2-eq./MJ), energy intensity of the production (MJ/kg dry matter), areal productivity (kg dry matter/ha), areal land-based GHG emissions (CO2-eq./ha) and area (ha). These separate elements in the identity can be targeted in emissions reduction and mitigation policies and are useful to analyse past and current trends in emissions and to explore future scenarios. Using the Kaya-Porter identity we have performed a case study on Danish crop production and find emissions to have been reduced by 12% from 1992 to 2008, whilst yields per unit area have remained constant. Both land-based emissions and energy-based emissions have decreased, mainly due to a 41% reduction in nitrogen fertilizer use. The initial identity based analysis for crop production presented here needs to be extended to include livestock to reflect the entire agricultural production and food demand sectors, thereby permitting analysis of the trade-offs between animal and plant food production, human dietary preferences and population and resulting GHG emissions. (C) 2012 Elsevier B.V. All rights reserved.
Address 2016-07-22
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4581
Permanent link to this record
 

 
Author Ghaley, B.B.; Vesterdal, L.; Porter, J.R.
Title Quantification and valuation of ecosystem services in diverse production systems for informed decision-making Type Journal Article
Year 2014 Publication Environmental Science & Policy Abbreviated Journal Environmental Science & Policy
Volume (down) 39 Issue Pages 139-149
Keywords bio-physical quantification; combined food and energy system; economic valuation field measurements; land management; marketable and non-marketable ecosystem services; land-use change; carbon; farm; efficiency; crops; china; model; scale; field
Abstract The empirical evidence of decline in ecosystem services (ES) over the last century has reinforced the call for ES quantification, monitoring and valuation. Usually, only provisioning ES are marketable and accounted for, whereas regulating, supporting and cultural ES are typically non-marketable and overlooked in connection with land-use or management decisions. The objective of this study was to quantify and value total ES (marketable and non-marketable) of diverse production systems and management intensities in Denmark to provide a basis for decisions based on economic values. The production systems were conventional wheat (Cwheat), a combined food and energy (CFE) production system and beech forest. Marketable (provisioning ES) and non-marketable ES (supporting, regulating and cultural) ES were quantified by dedicated on-site field measurements supplemented by literature data. The value of total ES was highest in CFE (US$ 3142 ha(-1) yr(-1)) followed by Cwheat (US$ 2767 ha (1) yr(-1)) and beech forest (US$ 2328 ha(-1) yr(-1)). As the production system shifted from Cwheat – CFE-beech, the marketable ES share decreased from 88% to 75% in CFE and 55% in beech whereas the non-marketable ES share increased to 12%, 25% and 45% of total ES in Cwheat, CFE and beech respectively, demonstrating production system and management effects on ES values. Total ES valuation, disintegrated into marketable and non-marketable share is a potential way forward to value ES and `tune’ our production systems for enhanced ES provision. Such monetary valuation can be used by policy makers and land managers as a tool to assess ES value and monitor the sustained flow of ES. The application of ES-based valuation for land management can enhance ES provision for maintaining the productive capacity of the land without depending on the external fossil-based fertilizer and chemical input. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1462-9011 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4623
Permanent link to this record
 

 
Author Bennetzen, E.H.; Smith, P.; Porter, J.R.
Title Agricultural production and greenhouse gas emissions from world regions—The major trends over 40 years Type Journal Article
Year 2016 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change
Volume (down) 37 Issue Pages 43-55
Keywords Agriculture; Greenhouse gas intensity; Climate change; Kaya-Porter; identity; Decoupling emissions; Kaya-identity; land-use change; carbon-dioxide emissions; sustainable intensification; livestock production; forest transitions; global agriculture; crop; production; food security; deforestation; mitigation
Abstract Since 1970, global agricultural production has more than doubled with agriculture and land-use change now responsible for similar to 1/4 of greenhouse gas emissions from human activities. Yet, while greenhouse gas (GHG) emissions per unit of agricultural product have been reduced at a global level, trends in world regions have been quantified less thoroughly. The KPI (Kaya-Porter Identity) is a novel framework for analysing trends in agricultural production and land-use change and related GHG emissions. We apply this to assess trends and differences in nine world regions over the period 1970-2007. We use a deconstructed analysis of emissions from the mix of multiple sources, and show how each is changing in terms of absolute emissions on a per area and per produced unit basis, and how the change of emissions from each source contributes to the change in total emissions over time. The doubling of global agricultural production has mainly been delivered by developing and transitional countries, and this has been mirrored by increased GHG emissions. The decoupling of emissions from production shows vast regional differences. Our estimates show that emissions per unit crop (as kg CO2-equivalents per Giga Joule crop product), in Oceania, have been reduced by 94% from 1093 to 69; in Central & South America by 57% from 849 to 362; in sub-Saharan Africa by 27% from 421 to 309, and in Europe by 56% from 86 to 38. Emissions per unit livestock (as kg CO2-eq. GJ(-1) livestock product) have reduced; in sub-Saharan Africa by 24% from 6001 to 4580; in Central & South America by 61% from 3742 to 1448; in Central & Eastern Asia by 82% from 3,205 to 591, and; in North America by 28% from 878 to 632. In general, intensive and industrialised systems show the lowest emissions per unit of agricultural production. (C) 2016 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-3780 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4758
Permanent link to this record
 

 
Author Sieber, S.; Amjath-Babu, T.S.; Jansson, T.; Müller, K.; Tscherning, K.; Graef, F.; Pohle, D.; Helming, K.; Rudloff, B.; Saravia-Matus, B.S.; Gomez y Paloma, S.
Title Sustainability impact assessment using integrated meta-modelling: Simulating the reduction of direct support under the EU common agricultural policy (CAP) Type Journal Article
Year 2013 Publication Land Use Policy Abbreviated Journal Land Use Policy
Volume (down) 33 Issue Pages 235-245
Keywords SIAT; CAP; sustainability; impact assessment; land use change; trade off analysis; model; Netherlands; systems
Abstract Assessing the impact of macro-level policy driven land use changes on regional sustainability is an important task that can facilitate complex decision making processes of introducing reforms. The research work demonstrates the ability of Sustainability Impact Assessment Tool (SIAT), a meta-model, in conducting ex ante spatially explicit cross sectoral impact assessments of changes in common agricultural policy (CAP). The meta-model is able to appraise impacts of CAP amendments on land use and their repercussions on multiple indicators of sustainability. The presented study comprehensively analyses the possible impacts of discontinuing direct financial support to farmers under CAP. The simulations of the meta-model are able to reveal the land use changes both at EU and regional levels as well as to bring forth the subsequent changes in a number of indicators representing the regional sustainability (for five case study regions). In a nutshell, the simulations indicate that a reduction in direct support brings in general, a decrease in farmed area, an increase in forested land, less fluctuation in natural vegetation coverage, increase in abandoned arable land area and negligible changes in built-up area despite regionally diverging land use trends. The simulated changes in sustainability indicators for the study regions in consequence to these land use changes show that the discontinuation of subsidies evokes responses that are in general climate friendly (reduction in methane and N2O emissions, diminishing energy use and reduction in global warming potential), economically beneficial (increase in gross value of agriculture) and socially desired (decrease in unemployment rate) as well as environmentally harmful (increase in pesticide use). Even though the appraisals of diversity indicators such as forest deadwood and farmland birds are not conclusive for all regions, the changes are positive for the former indicator and slightly negative for the latter in general. The trade-offs among these regional sustainability indicators using their directional associations are also presented for a comprehensive assessment of the impacts. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0264-8377 ISBN Medium Article
Area Expedition Conference
Notes TradeM Approved no
Call Number MA @ admin @ Serial 4479
Permanent link to this record