|   | 
Details
   web
Records
Author Rusu, T.
Title Energy efficiency and soil conservation in conventional, minimum tillage and no-tillage Type Journal Article
Year 2014 Publication International Soil and Water Conservation Research Abbreviated Journal International Soil and Water Conservation Research
Volume (down) 2 Issue 4 Pages 42-49
Keywords No-tillage; Minimum tillage; Yield; Energy efficiency; Soil conservation
Abstract The objective of this research was to determine the capacity of a soil tillage system in soil conservation, in productivity and in energy efficiency. The minimum tillage and no-tillage systems represent good alternatives to the conventional (plough) system of soil tillage, due to their conservation effects on soil and to the good production of crops (Maize, 96%-98% of conventional tillage for minimum tillage, and 99.8% of conventional tillage for no till; Soybeans, 103%-112% of conventional tillage for minimum tillage and 117% of conventional tillage for no till; Wheat, 93%-97% of conventional tillage for minimum tillage and 117% of conventional tillage for no till. The choice of the right soil tillage system for crops in rotation help reduce energy consumption, thus for maize: 97%-98% energy consumption of conventional tillage when using minimum tillage and 91% when using no-tillage; for soybeans: 98% energy consumption of conventional tillage when using minimum tillage and 93 when using no-tillage; for wheat: 97%-98% energy consumption of conventional tillage when using minimum tillage and 92% when using no-tillage. Energy efficiency is in relation to reductions in energy use, but also might include the efficiency and impact of the tillage system on the cultivated plant. For all crops in rotation, energy efficiency (energy produced from 1 MJ consumed) was the best in no-tillage — 10.44 MJ ha− 1 for maize, 6.49 MJ ha− 1 for soybean, and 5.66 MJ ha− 1 for wheat. An analysis of energy-efficiency in agricultural systems includes the energy consumed-energy produced-energy yield comparisons, but must be supplemented by soil energy efficiency, based on the conservative effect of the agricultural system. Only then will the agricultural system be sustainable, durable in agronomic, economic and ecological terms. The implementation of minimum and no-tillage soil systems has increased the organic matter content from 2% to 7.6% and water stable aggregate content from 5.6% to 9.6%, at 0–30 cm depth, as compared to the conventional system. Accumulated water supply was higher (with 12.4%-15%) for all minimum and no-tillage systems and increased bulk density values by 0.01%-0.03% (no significant difference) While the soil fertility and the wet aggregate stability have initially been low, the effect of conservation practices on the soil characteristics led to a positive impact on the water permeability in the soil. Availability of soil moisture during the crop growth period led to a better plant watering condition. Subsequent release of conserved soil water regulated the plant water condition and soil structure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2095-6339 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4637
Permanent link to this record
 

 
Author Köchy, M.; Hiederer, R.; Freibauer, A.
Title Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world Type Journal Article
Year 2015 Publication Soil Abbreviated Journal Soil
Volume (down) 1 Issue Pages 351-365
Keywords
Abstract •Soils contain 1062 Pg organic C (SOC) in 0-1 m depth based on the adjusted Harmonized World Soil Database. Different estimates of bulk density of Histosols cause an uncertainty in the range of -56/+180 Pg. We also report the frequency distribution of SOC stocks by continent, wetland type, and permafrost type. Using additional estimates for frozen and deeper soils, global soils are estimated to contain 1325 Pg SOC in 0-1m and ca. 3000 Pg, including deeper layers. The global soil organic carbon (SOC) mass is relevant for the carbon cycle budget and thus atmospheric carbon concentrations. We review current estimates of SOC stocks and mass (stock × area) in wetlands, permafrost and tropical regions and the world in the upper 1 m of soil. The Harmonized World Soil Database (HWSD) v.1.2 provides one of the most recent and coherent global data sets of SOC, giving a total mass of 2476 Pg when using the original values for bulk density. Adjusting the HWSD’s bulk density (BD) of soil high in organic carbon results in a mass of 1230 Pg, and additionally setting the BD of Histosols to 0.1 g cm−3 (typical of peat soils), results in a mass of 1062 Pg. The uncertainty in BD of Histosols alone introduces a range of −56 to +180 Pg C into the estimate of global SOC mass in the top 1 m, larger than estimates of global soil respiration. We report the spatial distribution of SOC stocks per 0.5 arcminutes; the areal masses of SOC; and the quantiles of SOC stocks by continents, wetland types, and permafrost types. Depending on the definition of “wetland”, wetland soils contain between 82 and 158 Pg SOC. With more detailed estimates for permafrost from the Northern Circumpolar Soil Carbon Database (496 Pg SOC) and tropical peatland carbon incorporated, global soils contain 1325 Pg SOC in the upper 1 m, including 421 Pg in tropical soils, whereof 40 Pg occurs in tropical wetlands. Global SOC amounts to just under 3000 Pg when estimates for deeper soil layers are included. Variability in estimates is due to variation in definitions of soil units, differences in soil property databases, scarcity of information about soil carbon at depths > 1 m in peatlands, and variation in definitions of “peatland”.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2199-398x ISBN Medium Article
Area Expedition Conference
Notes LiveM, Hub, ft_macsur Approved no
Call Number MA @ admin @ Serial 4686
Permanent link to this record