toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Reidsma, P.; Wolf, J.; Kanellopoulos, A.; Schaap, B.F.; Mandryk, M.; Verhagen, J.; van Ittersum, M.K. url  doi
openurl 
  Title Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands Type Journal Article
  Year 2015 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume (down) 10 Issue 4 Pages 045004  
  Keywords climate change adaptation; scenario; farm diversity; crop simulation; bio-economic farm modelling; european-union; crop yields; agriculture; responses; models; wheat; variability; improvement; strategies; scenarios  
  Abstract Rather than on crop modelling only, climate change impact assessments in agriculture need to be based on integrated assessment and farming systems analysis, and account for adaptation at different levels. With a case study for Flevoland, the Netherlands, we illustrate that (1) crop models cannot account for all relevant climate change impacts and adaptation options, and (2) changes in technology, policy and prices have had and are likely to have larger impacts on farms than climate change. While crop modelling indicates positive impacts of climate change on yields of major crops in 2050, a semi-quantitative and participatory method assessing impacts of extreme events shows that there are nevertheless several climate risks. A range of adaptation measures are, however, available to reduce possible negative effects at crop level. In addition, at farm level farmers can change cropping patterns, and adjust inputs and outputs. Also farm structural change will influence impacts and adaptation. While the 5th IPCC report is more negative regarding impacts of climate change on agriculture compared to the previous report, also for temperate regions, our results show that when putting climate change in context of other drivers, and when explicitly accounting for adaptation at crop and farm level, impacts may be less negative in some regions and opportunities are revealed. These results refer to a temperate region, but an integrated assessment may also change perspectives on climate change for other parts of the world.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4649  
Permanent link to this record
 

 
Author Ghaley, B.B.; Porter, J.R. doi  openurl
  Title Ecosystem function and service quantification and valuation in a conventional winter wheat production system with the DAISY model in Denmark Type Journal Article
  Year 2014 Publication Ecosystem Services Abbreviated Journal Ecosystem Services  
  Volume (down) 10 Issue Pages 79-83  
  Keywords soil organic matter; winter wheat production; informed decision-making; ecosystem function; ecosystem service; soil carbon sequestration; organic-matter dynamics; mitigate climate-change; calibration; validation; land  
  Abstract With inevitable link between ecosystem function (EF), ecosystem services (ES) and agricultural productivity, there is a need for quantification and valuation of EF and ES in agro-ecosystems. Management practices have significant effects on soil organic matter (SOM), affecting productivity, EF and ES provision. The objective was to quantify two EF: soil water storage and nitrogen mineralization and three ES: food and fodder production and carbon sequestration, in a conventional winter wheat production system at 2.6% SOM compared to 50% lower (1.3%) and 50% higher (3.9%) SOM in Denmark by DAISY model. At 2.6% SOM, the food and fodder production was 649 and 6.86 t ha(-1) year(-1) respectively whereas carbon sequestration and soil water storage was 9.73 t ha(-1) year and 684 mm ha(-1) year(-1) respectively and nitrogen mineralisation was 83.58 kg ha(-1) year(-1), AL 2.6% SOM, the two EF and three ES values were US$ 177 and US$ 2542 ha(-1) year respectively equivalent to US$ 96 and US$1370 million year(-1) respectively in Denmark. The EF and ES quantities and values were positively correlated with SOM content. Hence, the quantification and valuation of EF and ES provides an empirical tool for optimising the Er. and ES provision for agricultural productivity. (C) 2014 Elsevier B.V. All rights reserved  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-0416 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4625  
Permanent link to this record
 

 
Author Baranowski, P.; Jedryczka, M.; Mazurek, W.; Babula-Skowronska, D.; Siedliska, A.; Kaczmarek, J. doi  openurl
  Title Hyperspectral and thermal imaging of oilseed rape (Brassica napus) response to fungal species of the genus Alternaria Type Journal Article
  Year 2015 Publication PLoS One Abbreviated Journal PLoS One  
  Volume (down) 10 Issue 3 Pages e0122913  
  Keywords Algorithms; Alternaria/*pathogenicity; Brassica napus/microbiology/*physiology  
  Abstract In this paper, thermal (8-13 µm) and hyperspectral imaging in visible and near infrared (VNIR) and short wavelength infrared (SWIR) ranges were used to elaborate a method of early detection of biotic stresses caused by fungal species belonging to the genus Alternaria that were host (Alternaria alternata, Alternaria brassicae, and Alternaria brassicicola) and non-host (Alternaria dauci) pathogens to oilseed rape (Brassica napus L.). The measurements of disease severity for chosen dates after inoculation were compared to temperature distributions on infected leaves and to averaged reflectance characteristics. Statistical analysis revealed that leaf temperature distributions on particular days after inoculation and respective spectral characteristics, especially in the SWIR range (1000-2500 nm), significantly differed for the leaves inoculated with A. dauci from the other species of Alternaria as well as from leaves of non-treated plants. The significant differences in leaf temperature of the studied Alternaria species were observed in various stages of infection development. The classification experiments were performed on the hyperspectral data of the leaf surfaces to distinguish days after inoculation and Alternaria species. The second-derivative transformation of the spectral data together with back-propagation neural networks (BNNs) appeared to be the best combination for classification of days after inoculation (prediction accuracy 90.5%) and Alternaria species (prediction accuracy 80.5%).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4549  
Permanent link to this record
 

 
Author Ghaley, B.B.; Porter, J.R.; Sandhu, H.S. url  doi
openurl 
  Title Soil-based ecosystem services: a synthesis of nutrient cycling and carbon sequestration assessment methods Type Journal Article
  Year 2014 Publication International Journal of Biodiversity Science, Ecosystem Services & Management Abbreviated Journal International Journal of Biodiversity Science, Ecosystem Services & Management  
  Volume (down) 10 Issue 3 Pages 177-186  
  Keywords ecosystem functions; litter decomposition; mineralisation; assessment methodologies; stoichiometry  
  Abstract Among the soil-based ecosystem services (ES), nutrient cycling and carbon sequestration have direct influence on the biogeochemical cycles and greenhouse gas emissions affecting provision of other ES that support human existence. We reviewed methods to assess the two key ES by identifying their strengths and weaknesses and have made suggestions for using appropriate methods for better understanding of the ecosystem functions for the provision of ES. Relevant papers for the review were chosen on the basis of (i) diversity of studies on the two key ES in different ecosystems, (ii) methodologies applied and (iii) detailed descriptions of the trial locations in terms of vegetation, soil type, location and climatic information. We concluded that (i) elemental stoichiometrical ratios could be a potential approach to assess the health of ecosystems in terms of provision of the two ES discussed, (ii) stoichiometric imbalances need to be avoided between the supply and the demand of the nutrients to maintain the ES provision in terrestrial ecosystems and (iii) stoichiometric ratios can act as a management tool at a field, farm and at landscape level, to complement other compositional biodiversity and functional diversity approaches to ensure sustainable provision of ES.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2151-3732 2151-3740 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4522  
Permanent link to this record
 

 
Author Brilli, L.; Ferrise, R.; Dibari, C.; Bindi, M.; Bellocchi, G. url  openurl
  Title Needs on model improvement Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume (down) 10 Issue Pages XC1.1-D  
  Keywords  
  Abstract The need to answer new scientific questions can be satisfied by an increased knowledge of physiological mechanisms which, in turn, can be used for improving the accuracy of simulations of process-based models. In this context, this report highlights areas that need to be further improved to facilitate the operational use of simulation models. It describes missing approaches within simulation models which, if implemented, would likely improve the representation of the dynamics of processes underlying different compartments of crop and grassland systems (e.g. plant growth and development, yield production, GHG emissions), as well as of the livestock production systems.  The following rationale has been used in the organization of this report. We first briefly introduced the need to improve the reliability of existing models. Then, we indicated climate change and its influence on the global carbon balance as the main issue to be addressed by existing crop and grassland (section 2), and livestock (section 3) models. In section 2, among the major aspects that if implemented may reduce the uncertainty inherent to model outputs, we suggested: i) quantifying the effects of climate extremes on biological systems; ii) modelling of multi-species sward; iii) coupling of pest and disease sub-models; iv) improvement of the carry-over effect. In section 3, as the most important aspects to consider in livestock models we indicated: i) impacts and dynamics of pathogens and disease; ii) heat stress effects on livestock; iii) effects on grassland productivity and nutritional values; iv) improvement of GHG emissions dynamics.  In Section 4, remarks are made concerning the need to implement the suggested aspects into the existing models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 4938  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: