|   | 
Details
   web
Records
Author Park, S.K.; Sungmin, O.; Cassardo, C.
Title Soil temperature response in Korea to a changing climate using a land surface model Type Journal Article
Year 2017 Publication Asia-Pacific Journal of Atmospheric Sciences Abbreviated Journal Asia-Pacific Journal of Atmospheric Sciences
Volume (up) 53 Issue 4 Pages 457-470
Keywords Land surface process; soil temperature; climate change; soil-vegetation-atmosphere transfer (SVAT) scheme; University of TOrino model of land Process Interaction with Atmosphere (UTOPIA); REGIONAL CLIMATE; SNOW COVER; WATER-RESOURCES; SOCIOECONOMIC SCENARIOS; QUANTITATIVE-ANALYSIS; MESOSCALE MODEL; SRES EMISSIONS; FUTURE CLIMATE; CHANGE IMPACTS; SOUTH-AMERICA
Abstract The land surface processes play an important role in weather and climate systems through its regulation of radiation, heat, water and momentum fluxes. Soil temperature (ST) is one of the most important parameters in the land surface processes; however, there are few extensive measurements of ST with a long time series in the world. According to the CLImatology of Parameters at the Surface (CLIPS) methodology, the output of a trusted Soil-Vegetation- Atmosphere Transfer (SVAT) scheme can be utilized instead of observations to investigate the regional climate of interest. In this study, ST in South Korea is estimated in a view of future climate using the output from a trusted SVAT scheme – the University of TOrino model of land Process Interaction with Atmosphere (UTOPIA), which is driven by a regional climate model. Here characteristic changes in ST are analyzed under the IPCC A2 future climate for 2046-2055 and 2091-2100, and are compared with those under the reference climate for 1996-2005. The UTOPIA results were validated using the observed ST in the reference climate, and the model proved to produce reasonable ST in South Korea. The UTOPIA simulations indicate that ST increases due to environmental change, especially in air temperature (AT), in the future climate. The increment of ST is proportional to that of AT except for winter. In wintertime, the ST variations are different from region to region mainly due to variations in snow cover, which keeps ST from significant changes by the climate change.
Address 2017-12-21
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1976-7633 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5182
Permanent link to this record
 

 
Author Mueller, L.; Schindler, U.; Shepherd, T.G.; Ball, B.C.; Smolentseva, E.; Hu, C.; Hennings, V.; Schad, P.; Rogasik, J.; Zeitz, J.; Schlindwein, S.L.; Behrendt, A.; Helming, K.; Eulenstein, F.
Title A framework for assessing agricultural soil quality on a global scale Type Journal Article
Year 2012 Publication Archives of Agronomy and Soil Science Abbreviated Journal Archives of Agronomy and Soil Science
Volume (up) 58 Issue sup1 Pages S76-S82
Keywords soil quality; indicators; muencheberg soil quality rating
Abstract This paper provides information about a novel approach of rating agricultural soil quality (SQ) and crop yield potentials consistently over a range of spatial scales. The Muencheberg Soil Quality Rating is an indicator-based straightforward overall assessment method of agricultural SQ. It is a framework covering aspects of soil texture, structure, topography and climate which is based on 8 basic indicators and more than 12 hazard indicators. Ratings are performed by visual methods of soil evaluation. A field manual is then used to provide ratings from tables based on indicator thresholds. Finally, overall rating scores are given, ranging from 0 (worst) to 100 (best) to characterise crop yield potentials. The current approach is valid for grassland and cropland. Field tests in several countries confirmed the practicability and reliability of the method. At field scale, soil structure is a crucial, management induced criterion of agricultural SQ. At the global scale, climate controlled hazard indicators of drought risk and soil thermal regime are crucial for SQ and crop yield potentials. Final rating scores are well correlated with crop yields. We conclude that this system could be evolved for ranking and controlling agricultural SQ on a global scale.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0365-0340 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4589
Permanent link to this record
 

 
Author Bulak, P.; Walkiewicz, A.; Brzezińska, M.
Title Plant growth regulators-assisted phytoextraction Type Journal Article
Year 2014 Publication Biologia Plantarum Abbreviated Journal Biol. Plant.
Volume (up) 58 Issue 1 Pages 1-8
Keywords auxins; cytokinins; gibberelins; heavy metals; phytoremediation; pollutants; Zea-mays l.; heavy-metals; Pteris-vittata; organic-acids; molecular-mechanisms; contaminated soils; Sedum-alfredii; lead uptake; hyperaccumulation; phytoremediation
Abstract Plant growth regulators (PRG)-assisted phytoremediation is a technique that could enhance the yield of heavy metal accumulation in plant tissues. So far, a small number of experiments have helped identify three groups of plant hormones that may be useful for this purpose: auxins, cytokinins, and gibberellins. Studies have shown that these hormones positively affect the degree of accumulation of metallic impurities and improve the growth and stress resistance of plants. This review summarizes the present knowledge about PGRs’ impact on phytoextraction yield.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3134 ISBN Medium Review
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4515
Permanent link to this record
 

 
Author Angulo, C.; Gaiser, T.; Rötter, R.P.; Børgesen, C.D.; Hlavinka, P.; Trnka, M.; Ewert, F.
Title ‘Fingerprints’ of four crop models as affected by soil input data aggregation Type Journal Article
Year 2014 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume (up) 61 Issue Pages 35-48
Keywords crop model; soil data; spatial resolution; yield distribution; aggregation; us great-plains; climate-change; integrated assessment; simulating wheat; yields; scale; productivity; uncertainty; variability; responses
Abstract • Systematic analysis of the influence of spatial soil data resolution on simulated regional yields and total growing season evapotranspiration. • The responses of four crop models of different complexity are compared. • Differences between models are larger than the effect of the chosen spatial soil data resolution. • Low influence of soil data resolution due to: high precipitation amount, methods for calculating water retention and method of data aggregation. The spatial variability of soil properties is an important driver of yield variability at both field and regional scale. Thus, when using crop growth simulation models, the choice of spatial resolution of soil input data might be key in order to accurately reproduce observed yield variability. In this study we used four crop models (SIMPLACE<LINTUL-SLIM>, DSSAT-CSM, EPIC and DAISY) differing in the detail of modeling above-ground biomass and yield as well as of modeling soil water dynamics, water uptake and drought effects on plants to simulate winter wheat in two (agro-climatologically and geo-morphologically) contrasting regions of the federal state of North-Rhine-Westphalia (Germany) for the period from 1995 to 2008. Three spatial resolutions of soil input data were taken into consideration, corresponding to the following map scales: 1:50 000, 1:300 000 and 1:1 000 000. The four crop models were run for water-limited production conditions and model results were evaluated in the form of frequency distributions, depicted by bean-plots. In both regions, soil data aggregation had very small influence on the shape and range of frequency distributions of simulated yield and simulated total growing season evapotranspiration for all models. Further analysis revealed that the small influence of spatial resolution of soil input data might be related to: (a) the high precipitation amount in the region which partly masked differences in soil characteristics for water holding capacity, (b) the loss of variability in hydraulic soil properties due to the methods applied to calculate water retention properties of the used soil profiles, and (c) the method of soil data aggregation. No characteristic “fingerprint” between sites, years and resolutions could be found for any of the models. Our results support earlier recommendation to evaluate model results on the basis of frequency distributions since these offer quick and better insight into the distribution of simulation results as compared to summary statistics only. Finally, our results support conclusions from other studies about the usefulness of considering a multi-model approach to quantify the uncertainty in simulated yields introduced by the crop growth simulation approach when exploring the effects of scaling for regional yield impact assessments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4511
Permanent link to this record
 

 
Author Jabloun, M.; Schelde, K.; Tao, F.; Olesen, J.E.
Title Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark Type Journal Article
Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume (up) 62 Issue Pages 55-64
Keywords nitrogen; leaching; organic farming; wheat; barley; climate-change; catch crops; nitrogen mineralization; winter-wheat; arable crop; european agriculture; farming systems; spring barley; cover crops; soil
Abstract The effect of variation in seasonal temperature and precipitation on soil water nitrate (NO3-N) concentration and leaching from winter and spring cereals cropping systems was investigated over three consecutive four-year crop rotation cycles from 1997 to 2008 in an organic farming crop rotation experiment in Denmark. Three experimental sites, varying in climate and soil type from coarse sand to sandy loam, were investigated. The experiment included experimental treatments with different rotations, manure rate and cover crop, and soil nitrate concentrations was monitored using suction cups. The effects of climate, soil and management were examined in a linear mixed model, and only parameters with significant effect (P < 0.05) were included in the final model. The model explained 61% and 47% of the variation in the square root transform of flow-weighted annual NO3-N concentration for winter and spring cereals, respectively, and 68% and 77% of the variation in the square root transform of annual NO3-N leaching for winter and spring cereals, respectively. Nitrate concentration and leaching were shown to be site specific and driven by climatic factors and crop management. There were significant effects on annual N concentration and NO3-N leaching of location, rotation, previous crop and crop cover during autumn and winter. The relative effects of temperature and precipitation differed between seasons and cropping systems. A sensitivity analysis revealed that the predicted N concentration and leaching increased with increases in temperature and precipitation. (C) 2014 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4562
Permanent link to this record