|   | 
Details
   web
Records
Author Foyer, C.H.; Siddique, K.H.M.; Tai, A.P.K.; Anders, S.; Fodor, N.; Wong, F.-L.; Ludidi, N.; Chapman, M.A.; Ferguson, B.J.; Considine, M.J.; Zabel, F.; Prasad, P.V.V.; Varshney, R.K.; Nguyen, H.T.; Lam, H.-M.
Title Modelling predicts that soybean is poised to dominate crop production across Africa Type Journal Article
Year 2019 Publication Plant Cell and Environment Abbreviated Journal Plant Cell Environ.
Volume (down) 42 Issue 1 Pages 373-385
Keywords Climate-Change; Food Security; Sustainable Intensification; Smallholder; Farmers; Nitrogen-Fixation; Yield; Adaptation; Diversity; Impact; CO2
Abstract The superior agronomic and human nutritional properties of grain legumes (pulses) make them an ideal foundation for future sustainable agriculture. Legume-based farming is particularly important in Africa, where small-scale agricultural systems dominate the food production landscape. Legumes provide an inexpensive source of protein and nutrients to African households as well as natural fertilization for the soil. Although the consumption of traditionally grown legumes has started to decline, the production of soybeans (Glycine max Merr.) is spreading fast, especially across southern Africa. Predictions of future land-use allocation and production show that the soybean is poised to dominate future production across Africa. Land use models project an expansion of harvest area, whereas crop models project possible yield increases. Moreover, a seed change in farming strategy is underway. This is being driven largely by the combined cash crop value of products such as oils and the high nutritional benefits of soybean as an animal feed. Intensification of soybean production has the potential to reduce the dependence of Africa on soybean imports. However, a successful “soybean bonanza” across Africa necessitates an intensive research, development, extension, and policy agenda to ensure that soybean genetic improvements and production technology meet future demands for sustainable production.
Address 2019-01-10
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0140-7791 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5215
Permanent link to this record
 

 
Author Ghaley, B.B.; Vesterdal, L.; Porter, J.R.
Title Quantification and valuation of ecosystem services in diverse production systems for informed decision-making Type Journal Article
Year 2014 Publication Environmental Science & Policy Abbreviated Journal Environmental Science & Policy
Volume (down) 39 Issue Pages 139-149
Keywords bio-physical quantification; combined food and energy system; economic valuation field measurements; land management; marketable and non-marketable ecosystem services; land-use change; carbon; farm; efficiency; crops; china; model; scale; field
Abstract The empirical evidence of decline in ecosystem services (ES) over the last century has reinforced the call for ES quantification, monitoring and valuation. Usually, only provisioning ES are marketable and accounted for, whereas regulating, supporting and cultural ES are typically non-marketable and overlooked in connection with land-use or management decisions. The objective of this study was to quantify and value total ES (marketable and non-marketable) of diverse production systems and management intensities in Denmark to provide a basis for decisions based on economic values. The production systems were conventional wheat (Cwheat), a combined food and energy (CFE) production system and beech forest. Marketable (provisioning ES) and non-marketable ES (supporting, regulating and cultural) ES were quantified by dedicated on-site field measurements supplemented by literature data. The value of total ES was highest in CFE (US$ 3142 ha(-1) yr(-1)) followed by Cwheat (US$ 2767 ha (1) yr(-1)) and beech forest (US$ 2328 ha(-1) yr(-1)). As the production system shifted from Cwheat – CFE-beech, the marketable ES share decreased from 88% to 75% in CFE and 55% in beech whereas the non-marketable ES share increased to 12%, 25% and 45% of total ES in Cwheat, CFE and beech respectively, demonstrating production system and management effects on ES values. Total ES valuation, disintegrated into marketable and non-marketable share is a potential way forward to value ES and `tune’ our production systems for enhanced ES provision. Such monetary valuation can be used by policy makers and land managers as a tool to assess ES value and monitor the sustained flow of ES. The application of ES-based valuation for land management can enhance ES provision for maintaining the productive capacity of the land without depending on the external fossil-based fertilizer and chemical input. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1462-9011 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4623
Permanent link to this record
 

 
Author Bellocchi, G.; Rivington, M.; Matthews, K.; Acutis, M.
Title Deliberative processes for comprehensive evaluation of agroecological models. A review Type Journal Article
Year 2015 Publication Agronomy for Sustainable Development Abbreviated Journal Agron. Sust. Developm.
Volume (down) 35 Issue 2 Pages 589-605
Keywords component-oriented programing; deliberative approach; modeling; model evaluation; multiple metrics; stakeholders; decision-support-systems; environmental-models; performance evaluation; groundwater models; farming systems; climate-change; irene-dll; simulation; validation; integration
Abstract The use of biophysical models in agroecology has increased in the last few decades for two main reasons: the need to formalize empirical knowledge and the need to disseminate model-based decision support for decision makers (such as farmers, advisors, and policy makers). The first has encouraged the development and use of mathematical models to enhance the efficiency of field research through extrapolation beyond the limits of site, season, and management. The second reflects the increasing need (by scientists, managers, and the public) for simulation experimentation to explore options and consequences, for example, future resource use efficiency (i.e., management in sustainable intensification), impacts of and adaptation to climate change, understanding market and policy responses to shocks initiated at a biophysical level under increasing demand, and limited supply capacity. Production concerns thus dominate most model applications, but there is a notable growing emphasis on environmental, economic, and policy dimensions. Identifying effective methods of assessing model quality and performance has become a challenging but vital imperative, considering the variety of factors influencing model outputs. Understanding the requirements of stakeholders, in respect of model use, logically implies the need for their inclusion in model evaluation methods. We reviewed the use of metrics of model evaluation, with a particular emphasis on the involvement of stakeholders to expand horizons beyond conventional structured, numeric analyses. Two major topics are discussed: (1) the importance of deliberative processes for model evaluation, and (2) the role computer-aided techniques may play to integrate deliberative processes into the evaluation of agroecological models. We point out that (i) the evaluation of agroecological models can be improved through stakeholder follow-up, which is a key for the acceptability of model realizations in practice, (ii) model credibility depends not only on the outcomes of well-structured, numerically based evaluation, but also on less tangible factors that may need to be addressed using complementary deliberative processes, (iii) comprehensive evaluation of simulation models can be achieved by integrating the expectations of stakeholders via a weighting system of preferences and perception, (iv) questionnaire-based surveys can help understand the challenges posed by the deliberative process, and (v) a benefit can be obtained if model evaluation is conceived in a decisional perspective and evaluation techniques are developed at the same pace with which the models themselves are created and improved. Scientific knowledge hubs are also recognized as critical pillars to advance good modeling practice in relation to model evaluation (including access to dedicated software tools), an activity which is frequently neglected in the context of time-limited framework programs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1774-0746 1773-0155 ISBN Medium Review
Area Expedition Conference
Notes CropM, LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4551
Permanent link to this record
 

 
Author Kros, J.; Bakker, M.M.; Reidsma, P.; Kanellopoulos, A.; Jamal Alam, S.; de Vries, W.
Title Impacts of agricultural changes in response to climate and socioeconomic change on nitrogen deposition in nature reserves Type Journal Article
Year 2015 Publication Landscape Ecology Abbreviated Journal Landscape Ecol.
Volume (down) 30 Issue 5 Pages 871-885
Keywords Agricultural adaptation; Climate change; Land use change; Environmental; impact; Farming system; Nitrogen losses; netherlands; diversity; scenario
Abstract This paper describes the environmental consequences of agricultural adaptation on eutrophication of the nearby ecological network for a study area in the Netherlands. More specifically, we explored (i) likely responses of farmers to changes in climate, technology, policy, and markets; (ii) subsequent changes in nitrogen (N) emissions in responses to farmer adaptations; and (iii) to what extent the emitted N was deposited in nearby nature reserves, in view of the potential impacts on plant species diversity and desired nature targets. For this purpose, a spatially-explicit study at landscape level was performed by integrating the environmental model INITIATOR, the farm model FSSIM, and the land-use model RULEX. We evaluated two alternative scenarios of change in climate, technology, policy, and markets for 2050: one in line with a ‘global economy’ (GE) storyline and the other in line with a ‘regional communities’ (RC) storyline. Results show that the GE storyline resulted in a relatively strong increase in agricultural production compared to the RC storyline. Despite the projected conversions of agricultural land to nature (as part of the implementation of the National Ecological Network), we project an increase in N losses and N deposition due to N emissions in the study area of about 20 %. Even in the RC storyline, with a relatively modest increase in agricultural production and a larger expansion of the nature reserve, the N losses and deposition remain at the current level, whereas a reduction is required. We conclude that more ambitious green policies are needed in view of nature protection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-2973 1572-9761 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4565
Permanent link to this record
 

 
Author Cantelaube, P.; Jayet, P.
Title Geographical downscaling of outputs provided by an economic farm model calibrated at the regional level Type Journal Article
Year 2012 Publication Land Use Policy Abbreviated Journal Land Use Policy
Volume (down) 29 Issue Pages 35-44
Keywords Downscaling; Land use; Spatial statistics; Farm-groups; Farm Accountancy Data Network; FADN
Abstract There is a strong need for accurate and spatially referenced information regarding policy making and model linkage. This need has been expressed by land users, and policy and decision makers in order to estimate both spatially and locally the impacts of European policy (like the Common Agricultural Policy) and/or global changes on farm-groups. These entities are defined according to variables such as altitude, economic size and type of farming (referring to land uses). European farm-groups are provided through the Farm Accountancy Data Network (FADN) as statistical information delivered at regional level. The aim of the study is to map locally farm-group probabilities within each region. The mapping of the farm-groups is done in two steps: (1) by mapping locally the co-variables associated to the farm-groups, i.e. altitude and land uses; (2) by using regional FADN data as a priori knowledge for transforming land uses and altitude information into farm-groups location probabilities within each region. The downscaling process focuses on the land use mapping since land use data are originally point information located every 18 km. Interpolation of land use data is done at 100 m by using co-variables like land cover, altitude, climate and soil data which are continuous layers usually provided at fine resolution. Once the farm-groups are mapped, European Policy and global changes scenarios are run through an agro-economic model for assessing environmental impacts locally.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4582
Permanent link to this record