|   | 
Details
   web
Records
Author Yin, X.G.; Jabloun, M.; Olesen, J.E.; Özturk, I.; Wang, M.; Chen, F.
Title Effects of climatic factors, drought risk and irrigation requirement on maize yield in the Northeast Farming Region of China Type Journal Article
Year 2016 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.
Volume (up) 154 Issue 7 Pages 1171-1189
Keywords
Abstract Drought risk is considered to be among the main limiting factors for maize (Zea mays L.) production in the Northeast Farming Region of China (NFR). Maize yield data from 44 stations over the period 1961-2010 were combined with data from weather stations to evaluate the effects of climatic factors, drought risk and irrigation requirement on rain-fed maize yield in specific maize growth phases. The maize growing season was divided into four growth phases comprising seeding, vegetative, flowering and maturity based on observations of phenological data from 1981 to 2010. The dual crop coefficient was used to calculate crop evapotranspiration and soil water balance during the maize growing season. The effects of mean temperature, solar radiation, effective rainfall, water deficit, drought stress days, actual crop evapotranspiration and irrigation requirement in different growth phases were included in the statistical model to predict maize yield. During the period 1961-2010, mean temperature increased significantly in all growth phases in NFR, while solar radiation decreased significantly in southern NFR in the seeding, vegetative and flowering phases. Effective rainfall increased in the seeding and vegetative phases, reducing water deficit over the period, whereas decreasing effective rainfall over time in the flowering and maturity phases enhanced water deficit. An increase in days with drought stress was concentrated in western NFR, with larger volumes of irrigation needed to compensate for increased dryness. The present results indicate that higher mean temperature in the seeding and maturity phases was beneficial for maize yield, whereas excessive rainfall would damage maize yield, in particular in the seeding and flowering phases. Drought stress in any growth stage was found to reduce maize yield and water deficit was slightly better than other indicators of drought stress for explaining yield variability. The effect of drought stress was particularly strong in the seeding and flowering phases, indicating that these periods should be given priority for irrigation. The yield-reducing effects of both drought and intense rainfall illustrate the importance of further development of irrigation and drainage systems for ensuring the stability of maize production in NFR.
Address 2016-09-30
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4780
Permanent link to this record
 

 
Author Ebrahimi, E.; Manschadi, A.M.; Neugschwandtner, R.W.; Eitzinger, J.; Thaler, S.; Kaul, H.-P.
Title Assessing the impact of climate change on crop management in winter wheat – a case study for Eastern Austria Type Journal Article
Year 2016 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.
Volume (up) 154 Issue 07 Pages 1153-1170
Keywords
Abstract Climate change is expected to affect optimum agricultural management practices for autumn-sown wheat, especially those related to sowing date and nitrogen (N) fertilization. To assess the direction and quantity of these changes for an important production region in eastern Austria, the agricultural production systems simulator was parameterized, evaluated and subsequently used to predict yield production and grain protein content under current and future conditions. Besides a baseline climate (BL, 1981–2010), climate change scenarios for the period 2035–65 were derived from three Global Circulation Models (GCMs), namely CGMR, IPCM4 and MPEH5, with two emission scenarios, A1B and B1. Crop management scenarios included a combination of three sowing dates (20 September, 20 October, 20 November) with four N fertilizer application rates (60, 120, 160, 200 kg/ha). Each management scenario was run for 100 years of stochastically generated daily weather data. The model satisfactorily simulated productivity as well as water and N use of autumn- and spring-sown wheat crops grown under different N supply levels in the 2010/11 and 2011/12 experimental seasons. Simulated wheat yields under climate change scenarios varied substantially among the three GCMs. While wheat yields for the CGMR model increased slightly above the BL scenario, under IPCM4 projections they were reduced by 29 and 32% with low or high emissions, respectively. Wheat protein appears to increase with highest increments in the climate scenarios causing the largest reductions in grain yield (IPCM4 and MPEH-A1B). Under future climatic conditions, maximum wheat yields were predicted for early sowing (September 20) with 160 kg N/ha applied at earlier dates than the current practice.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8596 ISBN Medium Article
Area Expedition Conference
Notes TradeM Approved no
Call Number MA @ admin @ Serial 4723
Permanent link to this record
 

 
Author Salo, T.J.; Palosuo, T.; Kersebaum, K.C.; Nendel, C.; Angulo, C.; Ewert, F.; Bindi, M.; Calanca, P.; Klein, T.; Moriondo, M.; Ferrise, R.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Takáč, J.; Hlavinka, P.; Trnka, M.; Rötter, R.P.
Title Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization Type Journal Article
Year 2016 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.
Volume (up) 154 Issue 7 Pages 1218-1240
Keywords northern growing conditions; climate-change impacts; spring barley; systems simulation; farming systems; soil properties; winter-wheat; dynamics; growth; management
Abstract Eleven widely used crop simulation models (APSIM, CERES, CROPSYST, COUP, DAISY, EPIC, FASSET, HERMES, MONICA, STICS and WOFOST) were tested using spring barley (Hordeum vulgare L.) data set under varying nitrogen (N) fertilizer rates from three experimental years in the boreal climate of Jokioinen, Finland. This is the largest standardized crop model inter-comparison under different levels of N supply to date. The models were calibrated using data from 2002 and 2008, of which 2008 included six N rates ranging from 0 to 150 kg N/ha. Calibration data consisted of weather, soil, phenology, leaf area index (LAI) and yield observations. The models were then tested against new data for 2009 and their performance was assessed and compared with both the two calibration years and the test year. For the calibration period, root mean square error between measurements and simulated grain dry matter yields ranged from 170 to 870 kg/ha. During the test year 2009, most models failed to accurately reproduce the observed low yield without N fertilizer as well as the steep yield response to N applications. The multi-model predictions were closer to observations than most single-model predictions, but multi-model mean could not correct systematic errors in model simulations. Variation in soil N mineralization and LAI development due to differences in weather not captured by the models most likely was the main reason for their unsatisfactory performance. This suggests the need for model improvement in soil N mineralization as a function of soil temperature and moisture. Furthermore, specific weather event impacts such as low temperatures after emergence in 2009, tending to enhance tillering, and a high precipitation event just before harvest in 2008, causing possible yield penalties, were not captured by any of the models compared in the current study.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8596 1469-5146 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4713
Permanent link to this record
 

 
Author Tao, F.; Zhang, Z.; Zhang, S.; Rötter, R.P.; Shi, W.; Xiao, D.; Liu, Y.; Wang, M.; Liu, F.; Zhang, H.
Title Historical data provide new insights into response and adaptation of maize production systems to climate change/variability in China Type Journal Article
Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume (up) 185 Issue Pages 1-11
Keywords china; climate variability; grain yield; impact; maize; northeast china; tropical maize; wheat yields; heat-stress; crop yields; temperature; impacts; sensitivities; hybrids; trends
Abstract Extensive studies had been conducted to investigate the impacts of climate change on maize growth and yield in recent decades; however, the dynamics of crop husbandry in response and adaptation to climate change were not taken into account. Based on field observations spanning from 1981 to 2009 at 167 agricultural meteorological stations across China, we found that solar radiation and temperature over the observed maize growth period had decreasing trends during 1981-2009, and maize yields were positively correlated with these climate variables in major production regions. The decreasing trends in solar radiation and temperature during maize growth period were mainly ascribed to the adoption of late maturity cultivars with longer reproductive growth period (RGP). The adoption of late maturing cultivars with longer RGP contributed substantially to grain yield increase during the last three decades. The climate trends during maize growth period varied among different production areas. During 1981-2009, decreases in mean temperature, precipitation and solar radiation over maize growth period jointly reduced yield most by 13.2-17.3% in southwestern China, by contrast in northwestern China increases in mean temperature, precipitation and solar radiation jointly increased yield most by 12.9-14.4%. Our findings highlight that the adaptations of maize production system to climate change through shifts of sowing date and genotypes are underway and should be taken into accounted when evaluating climate change impacts. (C) 2015 Elsevier B.V. All rights reserved.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4816
Permanent link to this record
 

 
Author Zhang, S.; Tao, F.; Zhang, Z.
Title Changes in extreme temperatures and their impacts on rice yields in southern China from 1981 to 2009 Type Journal Article
Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume (up) 189 Issue Pages 43-50
Keywords Adaptation; Agriculture; Climate change; Crop; Extreme climate; Impacts; climate-change; spikelet sterility; heat-stress; crop yields; water-use; vulnerability; responses; period; CO2
Abstract Extreme temperature impacts on field crop are of key concern and increasingly assessed, however the studies have seldom taken into account the automatic adaptations such as shifts in planting dates, phenological dynamics and cultivars. In this present study, trial data on rice phenology, agro-meteorological hazards and yields during 1981-2009 at 120 national agro-meteorological experiment stations were used. The detailed data provide us a unique opportunity to quantify extreme temperature impacts on rice yield more precisely and in a setting with automatic adaptations. In this study, changes in an accumulated thermal index (growing degree day, GDD), a high temperature stress index (>35 degrees C high temperature degree day, HDD), and a cold stress index (<20 degrees C cold degree day, CDD), were firstly investigated. Then, their impacts on rice yield were further quantified by a multivariable analysis. The results showed that in the past three decades, for early rice, late rice and single rice in western part, and single rice in other parts of the middle and lower reaches of Yangtze River, respectively, rice yield increased by 5.83%, 1.71%, 8.73% and 3.49% due to increase in GDD. Rice yield was generally more sensitive to high temperature stress than to cold temperature stress. It decreased by 0.14%, 0.32%, 0.34% and 0.14% due to increase in HDD, by contrast increased by 1.61%, 0.26%, 0.16% and 0.01% due to decrease in CDD, respectively. In addition, decreases in solar radiation reduced rice yield by 0.96%, 0.13%, 9.34% and 6.02%. In the past three decades, the positive impacts of increase in GDD and the negative impacts of decrease in solar radiation played dominant roles in determining overall climate impacts on yield. However, with climate warming in future, the positive impacts of increase in GDD and decrease in CDD will be offset by increase in HDD, resulting in overall negative climate impacts on yield. Our findings highlight the risk of heat stress on rice yield and the importance of developing integrated adaptation strategies to cope with heat stress.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4731
Permanent link to this record