toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhao, G.; Hoffmann, H.; Van Bussel, L.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.; Constantin, J.; Teixeira, E.; Grosz, B.; Doro, L.; Zhao, Z.; Nendel, C.; Raynal, H.; Eckersten, H.; Haas, E.; Kuhnert, M.; Lewan, E.; Bach, M.; Kersebaum, K.-C.; Roggero, P.P.; Rötter, R.; Wallach, D.; Krauss, G.; Siebert, S.; Gaiser, T.; Kiese, R.; Wang, E.; Ewert, F. url  openurl
  Title Weather data aggregation’s effects on simulation of cropping systems: a model, production system and crop comparison Type Conference Article
  Year 2014 Publication Abbreviated Journal  
  Volume (up) Issue Pages  
  Keywords  
  Abstract Interactions of climate, soil and management practices in cropping systems can be simulated at different scales to provide information for decision making. Low resolution simulation need less effort, but important details could be lost through data aggregation effects (DAEs). This paper aims to provide a general method to assess the DAEs on weather data and the simulation of cropping systems, and further investigate how the DAEs vary with changing crop models, crops, variables and production systems. A 30-year continuous cropping system was simulated for winter wheat and silage maize and potential, water-limited and water-nitrogen-limited production situations. Climate data of 1 km resolution and aggregations to resolutions of 10 to 100 km was used as input for the simulations. The data aggregation narrowed the variation of weather data and DAEs increased with increasingly coarser spatial resolution, causing the loss of hot spots in simulated results. Spatial patterns were similar across different resolutions. Consistent with DAEs on weather data, the DAEs on simulated yield (0 to 1.2 t ha-1 for winter wheat and 0 to 1.7 t ha-1 for silage maize), evapotranspiration (3 to 45 mm yr-1 for winter wheat and 4 to 40 mm yr-1 for silage maize), and water use efficiency (0.02 to 0.25 kg m-3­ for winter wheat and 0.04 to 0.4 kg m-3­ for silage maize), increased with coarser spatial resolution. Thus, if spatial information is needed for local management decisions, higher resolution is needed to adequately capture the spatial heterogeneity or hot spots in the region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title FACCE MACSUR Mid-term Scientific Conference  
  Series Volume 3(S) Sassari, Italy Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FACCE MACSUR Mid-term Scientific Conference, 2014-04-01 to 2014-04-04, Sassari, Italy  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5141  
Permanent link to this record
 

 
Author Yin, X.; Kersebaum, K.-C.; Beaudoin, N.; Constantin, J.; Chen, F.; Louarn, G.; Manevski, K.; Hoffmann, M.; Kollas, C.; Armas-Herrera, C.M.; Baby, S.; Bindi, M.; Dibari, C.; Ferchaud, F.; Ferrise, R.; de Cortazar-Atauri, I.G.; Launay, M.; Mary, B.; Moriondo, M.; Öztürk, I.; Ruget, F.; Sharif, B.; Wachter-Ripoche, D.; Olesen, J.E. url  doi
openurl 
  Title Uncertainties in simulating N uptake, net N mineralization, soil mineral N and N leaching in European crop rotations using process-based models Type Journal Article
  Year 2020 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume (up) Issue Pages 107863  
  Keywords multi-model ensemble; crop rotations; catch crops; N cycling; N export  
  Abstract Modelling N transformations within cropping systems is crucial for N management optimization in order to increase N use efficiency and reduce N losses. Such modelling remains challenging because of the complexity of N cycling in soil–plant systems. In the current study, the uncertainties of six widely used process-based models (PBMs), including APSIM, CROPSYST, DAISY, FASSET, HERMES and STICS, were tested in simulating different N managements (catch crops (CC) and different N fertilizer rates) in 12-year rotations in Western Europe. Winter wheat, sugar beet and pea were the main crops, and radish was the main CC in the tested systems. Our results showed that PBMs simulated yield, aboveground biomass, N export and N uptake well with low RMSE values, except for sugar beet, which was generally less well parameterized. Moreover, PBMs provided more accurate crop simulations (i.e. N export and N uptake) compared to simulations of soil (N mineralization and soil mineral N (SMN)) and environmental variables (N leaching). The use of multi-model ensemble mean or median of four PBMs significantly reduced the mean absolute percentage error (MAPE) between simulations and observations to less than 15% for yield, aboveground biomass, N export and N uptake. Multi-model ensemble also significantly reduced the MAPE for net N mineralization and annual N leaching to around 15%, while it was larger than 20% for SMN. Generally, PBMs well simulated the CC effects on N fluxes, i.e. increasing N mineralization and reducing N leaching in both short-term and long-term, and all PBMs correctly predicted the effects of the reduced N rate on all measured variables in the study. The uncertainties of multi-model ensemble for N mineralization, SMN and N leaching were larger, mainly because these variables are influenced by plant-soil interactions and subject to cumulative long-term effects in crop rotations, which makes them more difficult to simulate. Large differences existed between individual PBMs due to the differences in formalisms for describing N processes in soil–plant systems, the skills of modelers and the model calibration level. In addition, the model performance also depended on the simulated variables, for instance, HERMES and FASSET performed better for yield and crop biomass, APSIM, DAISY and STICS performed better for N export and N uptake, STICS provided best simulation for SMN and N leaching among the six individual PBMs in the study, but all PBMs met difficulties to well predict either average or variance of soil N mineralization. Our results showed that better calibration for soil N variables is needed to improve model predictions of N cycling in order to optimize N management in crop rotations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium article  
  Area CropM Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5235  
Permanent link to this record
 

 
Author Graef, F.; Sieber, S.; Mutabazi, K.; Asch, F.; Biesalski, H.K.; Bitegeko, J.; Bokelmann, W.; Bruentrup, M.; Dietrich, O.; Elly, N.; Fasse, A.; Germer, J.U.; Grote, U.; Herrmann, L.; Herrmann, R.; Hoffmann, H.; Kahimba, F.C.; Kaufmann, B.; Kersebaum, K.-C.; Kilembe, C.; Kimaro, A.; Kinabo, J.; König, B.; König, H.; Lana, M.; Levy, C.; Lyimo-Macha, J.; Makoko, B.; Mazoko, G.; Mbaga, S.H.; Mbogoro, W.; Milling, H.; Mtambo, K.; Mueller, J.; Mueller, C.; Mueller, K.; Nkonja, E.; Reif, C.; Ringler, C.; Ruvuga, S.; Schaefer, M.; Sikira, A.; Silayo, V.; Stahr, K.; Swai, E.; Tumbo, S.; Uckert, G. url  doi
openurl 
  Title Framework for participatory food security research in rural food value chains Type Journal Article
  Year 2014 Publication Global Food Security Abbreviated Journal Global Food Security  
  Volume (up) 3 Issue 1 Pages 8-15  
  Keywords food security; food value chain; action research; tanzania; research framework  
  Abstract Enhancing food security for poor and vulnerable people requires adapting rural food systems to various driving factors. Food security-related research should apply participatory action research that considers the entire food value chain to ensure sustained success. This article presents a research framework that focusses on determining, prioritising, testing, adapting and disseminating food securing upgrading strategies across the multiple components of rural food value chains. These include natural resources, Food production, processing, markets, consumption and waste management. Scientists and policy makers jointly use tools developed for assessing potentials for enhancing regional food security at multiple spatial and temporal scales. The research is being conducted in Tanzania as a case study for Sub-Saharan countries and is done in close collaboration with local, regional and national stakeholders, encompassing all activities across all different food sectors. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-9124 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4523  
Permanent link to this record
 

 
Author Webber, H.; Ewert, F.; Olesen, J.E.; Müller, C.; Fronzek, S.; Ruane, A.C.; Bourgault, M.; Martre, P.; Ababaei, B.; Bindi, M.; Ferrise, R.; Finger, R.; Fodor, N.; Gabaldón-Leal, C.; Gaiser, T.; Jabloun, M.; Kersebaum, K.-C.; Lizaso, J.I.; Lorite, I.J.; Manceau, L.; Moriondo, M.; Nendel, C.; Rodríguez, A.; Ruiz-Ramos, M.; Semenov, M.A.; Siebert, S.; Stella, T.; Stratonovitch, P.; Trombi, G.; Wallach, D. doi  openurl
  Title Diverging importance of drought stress for maize and winter wheat in Europe Type Journal Article
  Year 2018 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume (up) 9 Issue Pages 4249  
  Keywords Climate-Change Impacts; Air CO2 Enrichment; Food Security; Heat-Stress; Nitrogen Dynamics; Semiarid Environments; Canopy Temperature; Simulation-Model; Crop Production; Elevated CO2  
  Abstract Understanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984-2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.  
  Address 2018-10-25  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041-1723 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5211  
Permanent link to this record
 

 
Author Kersebaum, K.-C.; Wallor, E.; Ventrella, D.; Cammarano, D.; Choucheney, E.; Ewert, F.; Ferrise, R.; Gaiser, T.; Garofalo, P.; Giglio, L.; Giola, P.; Hoffmann, M.; Laan, M.; Lewan, E.; Maharjan, G.R.; Moriondo, M.; Mula, L.; Nendel, C.; Pohankova, E.; Roggero, P.P.; Trnka, M.; Trombi, G. url  openurl
  Title Comparison of site sensitivity of crop models using spatially variable field data from Precision Agriculture Type Report
  Year 2017 Publication FACCE MACSUR Reports Abbreviated Journal  
  Volume (up) 10 Issue Pages C1.1-D2  
  Keywords  
  Abstract Site conditions and soil properties have a strong influence on impacts of climate change on crop production. Vulnerability of crop production to changing climate conditions is highly determined by the ability of the site to buffer periods of adverse climatic situations like water scarcity or excessive rainfall.  Therefore, the capability of models to reflect crop responses and water and nutrient dynamics under different site conditions is essential to assess climate impact even on a regional scale. To test and improve sensitivity of models to various site properties such as soil variability and hydrological boundary conditions, spatial variable data sets from precision farming of two fields in Germany and Italy were provided to modellers. For the German 20 ha field soil and management data for 60 grid points for 3 years (2 years wheat, 1 year triticale) were provided. For the Italian field (12 ha) information for 100 grid points were available for three growing seasons of durum wheat. Modellers were asked to run their models using a) the model specific procedure to estimate soil hydraulic properties from texture using their standard procedure and use in step b) fixed values for field capacity and wilting point derived from soil taxonomy. Only the phenology and crop yield of one grid point provided for a basic calibration. In step c) information for all grid points of the first year (yield, soil water and mineral N content for Germany, yield, biomass and LAI for Italy) were provided. First results of five out of twelve participating models are compared against measured state variables analysing their site specific response and consistency across crop and soil variables. (Main text to be published in a peer-reviewed journal)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Abstract  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4951  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: