|   | 
Details
   web
Records
Author Fan, F.; Henriksen, C.B.; Porter, J.
Title Valuation of ecosystem services in organic cereal crop production systems with different management practices in relation to organic matter input Type Journal Article
Year 2016 Publication Ecosystem Services Abbreviated Journal Ecosystem Services
Volume (up) 22 Issue Pages 117-127
Keywords soil physical-properties; carbon sequestration; microbial biomass; farming systems; nitrogen mineralization; earthworm populations; straw; incorporation; economic valuation; agricultural soils; different tillage; Organic farming; Ecosystem services; Economic valuation; Management; Informed decision making
Abstract As the degradation of global ecosystem services (ES) continues in the last five decades, maintaining or even enhancing the ES of agro-ecosystem is one of the approaches to mitigate the global ES loss. This study provides the first estimate of an economic valuation of ES provided by organic cereal crop production systems with different management practices in relation to organic matter input (low, medium and high). Our results show that organic matter inputs significantly affect the total ES value on organic cereal crop production systems. The system with high organic matter input has the highest gross total ES value (US$ 1969 ha(-1) yr(-1)), followed by the low organic matter input system (US$ 1688 ha(-1) yr(-1)), and the lowest ES value are found in the medium organic matter input system (US$ 1492 ha(-1) yr(-1)). Organic matter inputs have strong positive relationship with non-marketable ES values, while this relationship was not found in marketable ES values. Monetizing the ES can be used by land managers and policy makers to adjust management practices in terms of organic matter input in cereal production system with a long term goal for sustainable agriculture.
Address 2017-01-12
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2212-0416 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_MACSUR Approved no
Call Number MA @ admin @ Serial 4934
Permanent link to this record
 

 
Author Waha, K.; Müller, C.; Bondeau, A.; Dietrich, J.P.; Kurukulasuriya, P.; Heinke, J.; Lotze-Campen, H.
Title Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa Type Journal Article
Year 2013 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change
Volume (up) 23 Issue 1 Pages 130-143
Keywords multiple cropping; sequential cropping systems; crop modelling; agricultural management; adaptation options; global vegetation model; future food-production; rainy-season; west-africa; agriculture; yield; maize; soil; variability; heat
Abstract Multiple cropping systems provide more harvest security for farmers, allow for crop intensification and furthermore influence ground cover, soil erosion, albedo, soil chemical properties, pest infestation and the carbon sequestration potential. We identify the traditional sequential cropping systems in ten sub-Saharan African countries from a survey dataset of more than 8600 households. We find that at least one sequential cropping system is traditionally used in 35% of all administrative units in the dataset, mainly including maize or groundnuts. We compare six different management scenarios and test their susceptibility as adaptation measure to climate change using the dynamic global vegetation model for managed land LPJmL. Aggregated mean crop yields in sub-Saharan Africa decrease by 6-24% due to climate change depending on the climate scenario and the management strategy. As an exception, some traditional sequential cropping systems in Kenya and South Africa gain by at least 25%. The crop yield decrease is typically weakest in sequential cropping systems and if farmers adapt the sowing date to changing climatic conditions. Crop calorific yields in single cropping systems only reach 40-55% of crop calorific yields obtained in sequential cropping systems at the end of the 21st century. The farmers’ choice of adequate crops, cropping systems and sowing dates can be an important adaptation strategy to climate change and these management options should be considered in climate change impact studies on agriculture. (C) 2012 Elsevier Ltd. All rights reserved.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-3780 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4823
Permanent link to this record
 

 
Author Lipiec, J.; Doussan, C.; Nosalewicz, A.; Kondracka, K.
Title Effect of drought and heat stresses on plant growth and yield: a review Type Journal Article
Year 2013 Publication International Agrophysics Abbreviated Journal International Agrophysics
Volume (up) 27 Issue 4 Pages 463-477
Keywords water stress; high temperature; root and shoot; growth; tolerance mechanisms; management practices; water-use efficiency; soil physical-properties; abscisic-acid; high-temperature; root systems; hydraulic architecture; conservation tillage; photosystem-ii; l. genotypes; drying soil
Abstract Drought and heat stresses are important threat limitations to plant growth and sustainable agriculture worldwide. Our objective is to provide a review of plant responses and adaptations to drought and elevated temperature including roots, shoots, and final yield and management approaches for alleviating adverse effects of the stresses based mostly on recent literature. The sections of the paper deal with plant responses including root growth, transpiration, photosynthesis, water use efficiency, phenotypic flexibility, accumulation of compounds of low molecular mass (eg proline and gibberellins), and expression of some genes and proteins for increasing the tolerance to the abiotic stresses. Soil and crop management practices to alleviate negative effects of drought and heat stresses are also discussed. Investigations involving determination of plant assimilate partitioning, phenotypic plasticity, and identification of most stress- tolerant plant genotypes are essential for understanding the complexity of the responses and for future plant breeding. The adverse effects of drought and heat stress can be mitigated by soil management practices, crop establishment, and foliar application of growth regulators by maintaining an appropriate level of water in the leaves due to osmotic adjustment and stomatal performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0236-8722 ISBN Medium Review
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4608
Permanent link to this record
 

 
Author Witkowska-Walczak, B.; Sławiński, C.; Bartmiński, P.; Melke, J.; Cymerman, J.
Title Water conductivity of arctic zone soils (Spitsbergen) Type Journal Article
Year 2014 Publication International Agrophysics Abbreviated Journal International Agrophysics
Volume (up) 28 Issue 4 Pages 529-535
Keywords soils; arctic zone; water conductivity; grain size distribution; pore size distribution; SW spitsbergen; Svalbard; glacier; flow
Abstract The water conductivity of arctic zone soils derived in different micro-relief forms was determined. The greatest water conductivity at the 0-5 cm depth for the higher values of water potentials (> -7 kJ m(-3)) was shown by tundra polygons (Brunic-Turbic Cryosol, Arenic) – 904-0.09 cm day(-1), whereas the lowest were exhibited by Turbic Cryosols – 95-0.05 cm day(-1). Between -16 and -100 kJ m(-3), the water conductivity for tundra polygons rapidly decreased to 0.0001 cm day(-1), whereas their decrease for the other forms was much lower and in consequence the values were 0.007, 0.04, and 0.01 cm day(-1) for the mud boils (Turbic Cryosol (Siltic, Skeletic)), cell forms (Turbic Cryosol (Siltic, Skeletic)), and sorted circles (Turbic Cryosol (Skeletic)), respectively. In the 10-15 cm layer, the shape of water conductivity curves for the higher values of water potentials is nearly the same as for the upper layer. Similarly, the water conductivity is the highest -0.2 cm day(-1) for tundra polygons. For the lower water potentials, the differences in water conductivity increase to the decrease of soil water potential. At the lowest potential the water conductivity is the highest for sorted circles -0.02 cm day(-1) and the lowest in tundra polygons -0.00002 cm day(-1).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2300-8725 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4642
Permanent link to this record
 

 
Author Elsgaard, L.; Børgesen, C.D.; Olesen, J.E.; Siebert, S.; Ewert, F.; Peltonen-Sainio, P.; Rötter, R.P.; Skjelvåg, A.O.
Title Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe Type Journal Article
Year 2012 Publication Food Additives & Contaminants: Part A Abbreviated Journal Food Addit. Contam. Part A
Volume (up) 29 Issue 10 Pages 1514-1526
Keywords Agriculture/*economics/trends; Animals; Avena/chemistry/economics/*growth & development/microbiology; *Climate Change/economics; Crops, Agricultural/chemistry/economics/*growth & development/microbiology; Europe; *Food Safety; Forecasting/methods; Fungi/growth & development/metabolism; Humans; Models, Biological; Models, Economic; Mycotoxins/analysis/biosynthesis; Soil Pollutants/adverse effects/analysis; Spatio-Temporal Analysis; Triticum/chemistry/economics/*growth & development/microbiology; Uncertainty; Weather; Zea mays/chemistry/economics/*growth & development/microbiology
Abstract Climate change is anticipated to affect European agriculture, including the risk of emerging or re-emerging feed and food hazards. Indirectly, climate change may influence such hazards (e.g. the occurrence of mycotoxins) due to geographic shifts in the distribution of major cereal cropping systems and the consequences this may have for crop rotations. This paper analyses the impact of climate on cropping shares of maize, oat and wheat on a 50-km square grid across Europe (45-65°N) and provides model-based estimates of the changes in cropping shares in response to changes in temperature and precipitation as projected for the time period around 2040 by two regional climate models (RCM) with a moderate and a strong climate change signal, respectively. The projected cropping shares are based on the output from the two RCMs and on algorithms derived for the relation between meteorological data and observed cropping shares of maize, oat and wheat. The observed cropping shares show a south-to-north gradient, where maize had its maximum at 45-55°N, oat had its maximum at 55-65°N, and wheat was more evenly distributed along the latitudes in Europe. Under the projected climate changes, there was a general increase in maize cropping shares, whereas for oat no areas showed distinct increases. For wheat, the projected changes indicated a tendency towards higher cropping shares in the northern parts and lower cropping shares in the southern parts of the study area. The present modelling approach represents a simplification of factors determining the distribution of cereal crops, and also some uncertainties in the data basis were apparent. A promising way of future model improvement could be through a systematic analysis and inclusion of other variables, such as key soil properties and socio-economic conditions, influencing the comparative advantages of specific crops.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-0049 1944-0057 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4585
Permanent link to this record