toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dumont, B.; Basso, B.; Leemans, V.; Bodson, B.; Destain, J.-P.; Destain, M.-F. url  doi
openurl 
  Title A comparison of within-season yield prediction algorithms based on crop model behaviour analysis Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume (up) 204 Issue Pages 10-21  
  Keywords stics crop model; climate variability; lars-wg; yield prediction; log-normal distribution; convergence in law theorem; central limit theorem; weather generator; nitrogen balances; generic model; wheat; simulation; climate; stics; variability; skewness; efficiency  
  Abstract The development of methodologies for predicting crop yield, in real-time and in response to different agro-climatic conditions, could help to improve the farm management decision process by providing an analysis of expected yields in relation to the costs of investment in particular practices. Based on the use of crop models, this paper compares the ability of two methodologies to predict wheat yield (Triticum aestivum L.), one based on stochastically generated climatic data and the other on mean climate data. It was shown that the numerical experimental yield distribution could be considered as a log-normal distribution. This function is representative of the overall model behaviour. The lack of statistical differences between the numerical realisations and the logistic curve showed in turn that the Generalised Central Limit Theorem (GCLT) was applicable to our case study. In addition, the predictions obtained using both climatic inputs were found to be similar at the inter and intra-annual time-steps, with the root mean square and normalised deviation values below an acceptable level of 10% in 90% of the climatic situations. The predictive observed lead-times were also similar for both approaches. Given (i) the mathematical formulation of crop models, (ii) the applicability of the CLT and GLTC to the climatic inputs and model outputs, respectively, and (iii) the equivalence of the predictive abilities, it could be concluded that the two methodologies were equally valid in terms of yield prediction. These observations indicated that the Convergence in Law Theorem was applicable in this case study. For purely predictive purposes, the findings favoured an algorithm based on a mean climate approach, which needed far less time (by 300-fold) to run and converge on same predictive lead time than the stochastic approach. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4647  
Permanent link to this record
 

 
Author Wolf, J.; Ouattara, K.; Supit, I. url  doi
openurl 
  Title Sowing rules for estimating rainfed yield potential of sorghum and maize in Burkina Faso Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume (up) 214-215 Issue Pages 208-218  
  Keywords crop modelling; maize; sorghum; sowing; WOFOST; yield potential; semiarid west-africa; pearl-millet cultivation; soil organic-matter; climate-change; planting dates; crop model; variability; water; adaptation; tillage  
  Abstract To reduce the dependence on local expert knowledge, which is important for large-scale crop modelling studies, we analyzed sowing dates and rules for maize (Zea mays L.) and sorghum (Sorghum bicolor (L)) at three locations in Burkina Faso with strongly decreasing rainfall amounts from south to north. We tested in total 22 methods to derive optimal sowing dates that result in highest water-limited yields and lowest yield variation in a reproducible and objective way. The WOFOST crop growth simulation model was used. We found that sowing dates that are based on local expert knowledge, may work quite well for Burkina Faso and for West Africa in general. However, when no a priori information is available, maize should be sown between Julian days 160 and 200, with application of the following criteria: (a) cumulative rainfall in the sowing window is >= 3 cm or available soil moisture content is >2 cm in the moderately dry central part of Burkina Faso, (b) cumulative rainfall in this period is >= 2 cm or available soil moisture content is >1 cm in the more humid regions in the southern part of Burkina Faso. Sorghum should also be sown between Julian days 160 and 200 with application of the following criteria: (a) in the dry northern part of Burkina Faso the long duration sorghum variety should be sown when cumulative rainfall is >2 cm in the sowing window, and the short duration sorghum variety should be sown later when cumulative rainfall is >= 3 cm, (b) in central Burkina Faso sowing should start when cumulative rainfall in this period is >= 2 cm or when available soil moisture content is >1 cm. Sowing date rules are shown to be generally crop and location specific and are not generic for West Africa. However, the required precision of the sowing rules appears to rapidly decrease with increasing duration and intensity of the rainy season. Sowing delay as a result of, for example, labour constraints, has a disastrous effect on rainfed maize and sorghum yields, particularly in the northern part of West Africa with low rainfall. Optimization of sowing dates can also be done by simulating crop yields in a time window of two months around a predefined sowing date. Using these optimized dates appears to result in a good estimate of the maximal mean rainfed yield level. (C) 2015 Elsevier B.V. All rights reserved.  
  Address 2015-10-12  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4702  
Permanent link to this record
 

 
Author Conradt, T.; Gornott, C.; Wechsung, F. url  doi
openurl 
  Title Extending and improving regionalized winter wheat and silage maize yield regression models for Germany: Enhancing the predictive skill by panel definition through cluster analysis Type Journal Article
  Year 2016 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume (up) 216 Issue Pages 68-81  
  Keywords cluster analysis; crop yield estimation; germany; multivariate regression; silage maize; winter wheat; climate-change; canadian prairies; crop yield; temperature; responses; environments; variability; cultivar; china  
  Abstract Regional agricultural yield assessments allowing for weather effect quantifications are a valuable basis for deriving scenarios of climate change effects and developing adaptation strategies. Assessing weather effects by statistical methods is a classical approach, but for obtaining robust results many details deserve attention and require individual decisions as is demonstrated in this paper. We evaluated regression models for annual yield changes of winter wheat and silage maize in more than 300 German counties and revised them to increase their predictive power. A major effort of this study was, however, aggregating separately estimated time series models (STSM) into panel data models (PDM) based on cluster analyses. The cluster analyses were based on the per-county estimates of STSM parameters. The original STSM formulations (adopted from a parallel study) contained also the non-meteorological input variables acreage and fertilizer price. The models were revised to use only weather variables as estimation basis. These consisted of time aggregates of radiation, precipitation, temperature, and potential evapotranspiration. Altering the input variables generally increased the predictive power of the models as did their clustering into PDM. For each crop, five alternative clusterings were produced by three different methods, and similarities between their spatial structures seem to confirm the existence of objective clusters about common model parameters. Observed smooth transitions of STSM parameter values in space suggest, however, spatial autocorrelation effects that could also be modeled explicitly. Both clustering and autocorrelation approaches can effectively reduce the noise in parameter estimation through targeted aggregation of input data. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4709  
Permanent link to this record
 

 
Author Rötter, R.P.; Appiah, M.; Fichtler, E.; Kersebaum, K.C.; Trnka, M.; Hoffmann, M.P. doi  openurl
  Title Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes-A review Type Journal Article
  Year 2018 Publication Field Crops Research Abbreviated Journal  
  Volume (up) 221 Issue Pages 142-156  
  Keywords ft_macsur; Agroclimatic extremes; Crop model; Heat; Drought; Heavy rain; Anthropogenic Climate-Change; Head-Emergence Frost; Weather Extremes; Wheat Yields; Temperature Variability; Induced Sterility; Food Security; Soil-Moisture; Plant-Growth; Winter-Wheat  
  Abstract Climate change implies higher frequency and magnitude of agroclimatic extremes threatening plant production and the provision of other ecosystem services. This review is motivated by a mismatch between advances made regarding deeper understanding of abiotic stress physiology and its incorporation into ecophysiological models in order to more accurately quantifying the impacts of extreme events at crop system or higher aggregation levels. Adverse agroclimatic extremes considered most detrimental to crop production include drought, heat, heavy rains/hail and storm, flooding and frost, and, in particular, combinations of them. Our core question is: How have and could empirical data be exploited to improve the capability of widely used crop simulation models in assessing crop impacts of key agroclimatic extremes for the globally most important grain crops? To date there is no comprehensive review synthesizing available knowledge for a broad range of extremes, grain crops and crop models as a basis for identifying research gaps and prospects. To address these issues, we selected eight major grain crops and performed three systematic reviews using SCOPUS for period 1995-2016. Furthermore, we amended/complemented the reviews manually and performed an in-depth analysis using a sub-sample of papers. Results show that by far the majority of empirical studies (1631 out of 1772) concentrate on the three agroclimatic extremes drought, heat and heavy rain and on the three major staples wheat, maize and rice (1259 out of 1772); the concentration on just a few has increased over time. With respect to modelling studies two model families, i.e. CERES-DSSAT and APSIM, are dearly dominating for wheat and maize; for rice, ORYZA2000 and CERES-Rice predominate and are equally strong. For crops other than maize and wheat the number of studies is small. Empirical and modelling papers don’t differ much in the proportions the various extreme events are dealt with drought and heat stress together account for approx. 80% of the studies. There has been a dramatic increase in the number of papers, especially after 2010. As a way forward, we suggest to have very targeted and well-designed experiments on the specific crop impacts of a given extreme as well as of combinations of them. This in particular refers to extremes addressed with insufficient specificity (e.g. drought) or being under-researched in relation to their economic importance (heavy rains/storm and flooding). Furthermore, we strongly recommend extending research to crops other than wheat, maize and rice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial 5199  
Permanent link to this record
 

 
Author Hidy, D.; Barcza, Z.; Haszpra, L.; Churkina, G.; Pintér, K.; Nagy, Z. url  doi
openurl 
  Title Development of the Biome-BGC model for simulation of managed herbaceous ecosystems Type Journal Article
  Year 2012 Publication Ecological Modelling Abbreviated Journal Ecol. Model.  
  Volume (up) 226 Issue Pages 99-119  
  Keywords biogeochemical model; biome-bgc; grassland; management; soil moisture; bayesian calibration; carbon flux model; regional applications; bayesian calibration; use efficiency; general-model; exchange; balance; climate; grassland; variability  
  Abstract Apart from measurements, numerical models are the most convenient instruments to analyze the carbon and water balance of terrestrial ecosystems and their interactions with changing environmental conditions. The process-based Biome-BGC model is widely used to simulate the storage and flux of water, carbon, and nitrogen within the vegetation, litter, and soil of unmanaged terrestrial ecosystems. Considering herbaceous vegetation related simulations with Biome-BGC, soil moisture and growing season control on ecosystem functioning is inaccurate due to the simple soil hydrology and plant phenology representation within the model. Consequently, Biome-BGC has limited applicability in herbaceous ecosystems because (1) they are usually managed; (2) they are sensitive to soil processes, most of all hydrology; and (3) their carbon balance is closely connected with the growing season length. Our aim was to improve the applicability of Biome-BGC for managed herbaceous ecosystems by implementing several new modules, including management. A new index (heatsum growing season index) was defined to accurately estimate the first and the final days of the growing season. Instead of a simple bucket soil sub-model, a multilayer soil sub-model was implemented, which can handle the processes of runoff, diffusion and percolation. A new module was implemented to simulate the ecophysiological effect of drought stress on plant mortality. Mowing and grazing modules were integrated in order to quantify the functioning of managed ecosystems. After modifications, the Biome-BGC model was calibrated and validated using eddy covariance-based measurement data collected in Hungarian managed grassland ecosystems. Model calibration was performed based on the Bayes theorem. As a result of these developments and calibration, the performance of the model was substantially improved. Comparison with measurement-based estimate showed that the start and the end of the growing season are now predicted with an average accuracy of 5 and 4 days instead of 46 and 85 days as in the original model. Regarding the different sites and modeled fluxes (gross primary production, total ecosystem respiration, evapotranspiration), relative errors were between 18-60% using the original model and 10-18% using the developed model; squares of the correlation coefficients were between 0.02-0.49 using the original model and 0.50-0.81 using the developed model. (c) 2011 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 4472  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: