|   | 
Details
   web
Records
Author Wolf, J.; Ouattara, K.; Supit, I.
Title Sowing rules for estimating rainfed yield potential of sorghum and maize in Burkina Faso Type Journal Article
Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume (up) 214-215 Issue Pages 208-218
Keywords crop modelling; maize; sorghum; sowing; WOFOST; yield potential; semiarid west-africa; pearl-millet cultivation; soil organic-matter; climate-change; planting dates; crop model; variability; water; adaptation; tillage
Abstract To reduce the dependence on local expert knowledge, which is important for large-scale crop modelling studies, we analyzed sowing dates and rules for maize (Zea mays L.) and sorghum (Sorghum bicolor (L)) at three locations in Burkina Faso with strongly decreasing rainfall amounts from south to north. We tested in total 22 methods to derive optimal sowing dates that result in highest water-limited yields and lowest yield variation in a reproducible and objective way. The WOFOST crop growth simulation model was used. We found that sowing dates that are based on local expert knowledge, may work quite well for Burkina Faso and for West Africa in general. However, when no a priori information is available, maize should be sown between Julian days 160 and 200, with application of the following criteria: (a) cumulative rainfall in the sowing window is >= 3 cm or available soil moisture content is >2 cm in the moderately dry central part of Burkina Faso, (b) cumulative rainfall in this period is >= 2 cm or available soil moisture content is >1 cm in the more humid regions in the southern part of Burkina Faso. Sorghum should also be sown between Julian days 160 and 200 with application of the following criteria: (a) in the dry northern part of Burkina Faso the long duration sorghum variety should be sown when cumulative rainfall is >2 cm in the sowing window, and the short duration sorghum variety should be sown later when cumulative rainfall is >= 3 cm, (b) in central Burkina Faso sowing should start when cumulative rainfall in this period is >= 2 cm or when available soil moisture content is >1 cm. Sowing date rules are shown to be generally crop and location specific and are not generic for West Africa. However, the required precision of the sowing rules appears to rapidly decrease with increasing duration and intensity of the rainy season. Sowing delay as a result of, for example, labour constraints, has a disastrous effect on rainfed maize and sorghum yields, particularly in the northern part of West Africa with low rainfall. Optimization of sowing dates can also be done by simulating crop yields in a time window of two months around a predefined sowing date. Using these optimized dates appears to result in a good estimate of the maximal mean rainfed yield level. (C) 2015 Elsevier B.V. All rights reserved.
Address 2015-10-12
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4702
Permanent link to this record
 

 
Author Kraus, D.; Weller, S.; Klatt, S.; Haas, E.; Wassmann, R.; Kiese, R.; Butterbach-Bahl, K.
Title A new LandscapeDNDC biogeochemical module to predict CH4 and N2O emissions from lowland rice and upland cropping systems Type Journal Article
Year 2015 Publication Plant and Soil Abbreviated Journal Plant Soil
Volume (up) 386 Issue 1-2 Pages 125-149
Keywords methane; nitrous oxide; paddy rice; maize; model; nitrous-oxide emissions; process-based model; methane transport capacity; process-oriented model; pnet-n-dndc; forest soils; paddy soils; sensitivity-analysis; residue management; organic-matter
Abstract Replacing paddy rice by upland systems such as maize cultivation is an on-going trend in SE Asia caused by increasing water scarcity and higher demand for meat. How such land management changes will feedback on soil C and N cycles and soil greenhouse gas emissions is not well understood at present. A new LandscapeDNDC biogeochemical module was developed that allows the effect of land management changes on soil C and N cycle to be simulated. The new module is applied in combination with further modules simulating microclimate and crop growth and evaluated against observations from field experiments. The model simulations agree well with observed dynamics of CH (4) emissions in paddy rice depending on changes in climatic conditions and agricultural management. Magnitude and peak emission periods of N (2) O from maize cultivation are simulated correctly, though there are still deficits in reproducing day-to-day dynamics. These shortcomings are most likely related to simulated soil hydrology and may only be resolved if LandscapeDNDC is coupled to more complex hydrological models. LandscapeDNDC allows for simulation of changing land management practices in SE Asia. The possibility to couple LandscapeDNDC to more complex hydrological models is a feature needed to better understand related effects on soil-atmosphere-hydrosphere interactions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0032-079x ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4530
Permanent link to this record