toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Christen, B.; Kjeldsen, C.; Dalgaard, T.; Martin-Ortega, J. url  doi
openurl 
  Title Can fuzzy cognitive mapping help in agricultural policy design and communication? Type Journal Article
  Year 2015 Publication Land Use Policy Abbreviated Journal Land Use Policy  
  Volume 45 Issue Pages 64-75  
  Keywords Agricultural policy; Agro-environmental measures; Fuzzy cognitive mapping (FCM); General Binding Rules; Stakeholder communication; Scottish agriculture  
  Abstract Highlights •Fuzzy cognitive mapping (FCM)can help to improve agricultural policy design. •We analyse the views on regulation between farmers and non-farmers. •We demonstrate the utility of FCM in disentangling reasons for non-compliance. •Non-compliance is a result of dis-alignment of views rather than unwillingness. •FCM offers a critical, reflexive approach to how a regulatory process is conceived. Agricultural environmental regulation often fails to deliver the desired effects because of farmers adopting the related measures incorrectly or not at all. This is due to several barriers to the uptake of the prescribed environmentally beneficial farm management practices, most of which have been well established by social science research. Yet it is unclear why these barriers remain so difficult to overcome despite numerous and persistent attempts at the design, communication and enforcement of related agricultural policies. This paper examines the potential of fuzzy cognitive mapping (FCM) as a tool to disentangle the underlying reasons of this persistent problem. We present the FCM methodology as adapted to the application in a Scottish case study on how environmental regulation affects farmers and farming practice and what factors are important for compliance or non-compliance with this regulation. The study compares the views of two different stakeholder groups on this matter using FCM network visualizations that were validated by interviews and a workshop session. There was a farmers group representing a typical mix of Scottish farming systems and a non-farmers group, the latter comprising professionals from the fields of design, implementation, administration, consulting on and enforcement of agricultural policies. Between the two groups, the FCM process reveals a very different perception of importance and interaction of factors and strongly suggests that the problem lies in an institutional failure rather than in a simple unwillingness of farmers to obey the rules. FCM allows for a structured process of identifying areas of conflicting perceptions, but also areas where strongly differing groups of stakeholders might be able to gain common ground. In this way, FCM can help to identify anchoring points for targeted policy development and has the potential of becoming a useful tool in agricultural policy design and communication. Our results show the utility of FCM by pointing out how Scottish environmental regulation could be altered to increase compliance with the rules and where the reasons for the identified institutional failure might be sought.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4620  
Permanent link to this record
 

 
Author Bennetzen, E.H.; Smith, P.; Soussana, J.-F.; Porter, J.R. url  doi
openurl 
  Title Identity-based estimation of greenhouse gas emissions from crop production: case study from Denmark Type Journal Article
  Year 2012 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 41 Issue Pages 66-72  
  Keywords kaya identity; kaya-porter identity; crop production; greenhouse gas emission; energy intensity; mitigation; food system; agriculture; mitigation; energy; opportunities; inventory; europe; policy; land  
  Abstract In order to feed the world we need innovative thinking on how to increase agricultural production whilst also mitigating climate change. Agriculture and land-use change are responsible for approximately one-third of total anthropogenic greenhouse gas (GHG) emissions but hold potential for climate change mitigation but are only tangentially included in UNFCCC mitigation policies. To get a full estimate of GHG emissions from agricultural crop production both energy-based emissions and land-based emissions need to be accounted for. Furthermore, the major mitigation potential is likely to be indirect reduction of emissions i.e. reducing emissions per unit of agricultural product rather than the absolute emissions per se. Hence the system productivity must be included in the same analysis. This paper presents the Kaya-Porter identity, derived from the Maya identity, as a new way to calculate GHG emissions from agricultural crop production by deconstructing emissions into five elements; the GHG intensity of the energy used for production (kg CO2-eq./MJ), energy intensity of the production (MJ/kg dry matter), areal productivity (kg dry matter/ha), areal land-based GHG emissions (CO2-eq./ha) and area (ha). These separate elements in the identity can be targeted in emissions reduction and mitigation policies and are useful to analyse past and current trends in emissions and to explore future scenarios. Using the Kaya-Porter identity we have performed a case study on Danish crop production and find emissions to have been reduced by 12% from 1992 to 2008, whilst yields per unit area have remained constant. Both land-based emissions and energy-based emissions have decreased, mainly due to a 41% reduction in nitrogen fertilizer use. The initial identity based analysis for crop production presented here needs to be extended to include livestock to reflect the entire agricultural production and food demand sectors, thereby permitting analysis of the trade-offs between animal and plant food production, human dietary preferences and population and resulting GHG emissions. (C) 2012 Elsevier B.V. All rights reserved.  
  Address 2016-07-22  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4581  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: