toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Bai, H.; Tao, F.; Xiao, D.; Liu, F.; Zhang, H. url  doi
openurl 
  Title Attribution of yield change for rice-wheat rotation system in China to climate change, cultivars and agronomic management in the past three decades Type Journal Article
  Year 2016 Publication Climatic Change Abbreviated Journal Clim. Change  
  Volume 135 Issue 3-4 Pages 539-553  
  Keywords nitrogen-use efficiency; crop yields; winter-wheat; temperature; responses; impacts; decline; models; trends; plain  
  Abstract Using the detailed field experiment data from 1981 to 2009 at four representative agro-meteorological experiment stations in China, along with the Agricultural Production System Simulator (APSIM) rice-wheat model, we evaluated the impact of sowing/transplanting date on phenology and yield of rice-wheat rotation system (RWRS). We also disentangled the contributions of climate change, modern cultivars, sowing/transplanting density and fertilization management, as well as changes in each climate variables, to yield change in RWRS, in the past three decades. We found that change in sowing/transplanting date did not significantly affect rice and wheat yield in RWRS, although alleviated the negative impact of climate change to some extent. From 1981 to 2009, climate change jointly caused rice and wheat yield change by -17.4 to 1.5 %, of which increase in temperature reduced yield by 0.0-5.8 % and decrease in solar radiation reduced it by 1.5-8.7 %. Cultivars renewal, modern sowing/transplanting density and fertilization management contributed to yield change by 14.4-27.2, -4.7- -0.1 and 2.3-22.2 %, respectively. Our findings highlight that modern cultivars and agronomic management compensated the negative impacts of climate change and played key roles in yield increase in the past three decades.  
  Address 2016-06-01  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4736  
Permanent link to this record
 

 
Author Watson, J.; Challinor, A.J.; Fricker, T.E.; Ferro, C.A.T. url  doi
openurl 
  Title Comparing the effects of calibration and climate errors on a statistical crop model and a process-based crop model Type Journal Article
  Year 2015 Publication Climatic Change Abbreviated Journal Clim. Change  
  Volume 132 Issue 1 Pages 93-109  
  Keywords maize; yield; ensemble; impacts; design; heat  
  Abstract Understanding the relationship between climate and crop productivity is a key component of projections of future food production, and hence assessments of food security. Climate models and crop yield datasets have errors, but the effects of these errors on regional scale crop models is not well categorized and understood. In this study we compare the effect of synthetic errors in temperature and precipitation observations on the hindcast skill of a process-based crop model and a statistical crop model. We find that errors in temperature data have a significantly stronger influence on both models than errors in precipitation. We also identify key differences in the responses of these models to different types of input data error. Statistical and process-based model responses differ depending on whether synthetic errors are overestimates or underestimates. We also investigate the impact of crop yield calibration data on model skill for both models, using datasets of yield at three different spatial scales. Whilst important for both models, the statistical model is more strongly influenced by crop yield scale than the process-based crop model. However, our results question the value of high resolution yield data for improving the skill of crop models; we find a focus on accuracy to be more likely to be valuable. For both crop models, and for all three spatial scales of yield calibration data, we found that model skill is greatest where growing area is above 10-15 %. Thus information on area harvested would appear to be a priority for data collection efforts. These results are important for three reasons. First, understanding how different crop models rely on different characteristics of temperature, precipitation and crop yield data allows us to match the model type to the available data. Second, we can prioritize where improvements in climate and crop yield data should be directed. Third, as better climate and crop yield data becomes available, we can predict how crop model skill should improve.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 1573-1480 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4546  
Permanent link to this record
 

 
Author Ventrella, D.; Charfeddine, M.; Moriondo, M.; Rinaldi, M.; Bindi, M. url  doi
openurl 
  Title Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation and nitrogen fertilization Type Journal Article
  Year 2012 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change  
  Volume 12 Issue 3 Pages 407-419  
  Keywords Modelling; Climate change; Agronomic adaptation strategies; Yield; Tomato; Winter durum wheat; air co2 enrichment; change scenarios; cropping systems; change impacts; simulation; agriculture; variability; increase; model; responses; Environmental Sciences & Ecology  
  Abstract Agricultural crops are affected by climate change due to the relationship between crop development, growth, yield, CO2 atmospheric concentration and climate conditions. In particular, the further reduction in existing limited water resources combined with an increase in temperature may result in higher impacts on agricultural crops in the Mediterranean area than in other regions. In this study, the cropping system models CERES-Wheat and CROPGRO-Tomato of the Decision Support System for Agrotechnology Transfer (DSSAT) were used to analyse the response of winter durum wheat (Triticum aestivum L.) and tomato (Lycopersicon esculentum Mill.) crops to climate change, irrigation and nitrogen fertilizer managements in one of most productive areas of Italy (i.e. Capitanata, Puglia). For this analysis, three climatic datasets were used: (1) a single dataset (50 km x 50 km) provided by the JRC European centre for the period 1975-2005; two datasets from HadCM3 for the IPCC A2 GHG scenario for time slices with +2A degrees C (centred over 2030-2060) and +5A degrees C (centred over 2070-2099), respectively. All three datasets were used to generate synthetic climate series using a weather simulator (model LARS-WG). Adaptation strategies, such as irrigation and N fertilizer managements, have been investigated to either avoid or at least reduce the negative impacts induced by climate change impacts for both crops. Warmer temperatures were primarily shown to accelerate wheat and tomato phenology, thereby resulting in decreased total dry matter accumulation for both tomato and wheat under the +5A degrees C future climate scenario. Under the +2A degrees C scenario, dry matter accumulation and resulting yield were also reduced for tomato, whereas no negative yield effects were observed for winter durum wheat. In general, limiting the global mean temperature change of 2A degrees C, the application of adaptation strategies (irrigation and nitrogen fertilization) showed a positive effect in minimizing the negative impacts of climate change on productivity of tomato cultivated in southern Italy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 1436-378x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4480  
Permanent link to this record
 

 
Author Schönhart, M.; Nadeem, I. url  doi
openurl 
  Title Direct climate change impacts on cattle indicated by THI models Type Journal Article
  Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences  
  Volume 6 Issue Pages 17-17  
  Keywords dairy; THI; milk yield; integrated modelling; economic loss  
  Abstract  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4811  
Permanent link to this record
 

 
Author Żarski, J.; Dudek, S.; Kuśmierek-Tomaszewska, R.; Bojar, W.; Knopik, L.; Żarski, W. url  openurl
  Title Agroklimatologiczna ocena opadów atmosferycznych okresu wegetacyjnego w rejonie Bydgoszczy (Agro-climatological assessment of the growing season rainfall in the Bydgoszcz region) Type Journal Article
  Year 2014 Publication Infrastruktura i Ekologia Terenów Wiejskich (Infrastructure and Ecology of Rural Areas) Abbreviated Journal Infrastruktura i Ekologia Terenów Wiejskich (Infrastructure and Ecology of Rural Areas)  
  Volume Ii Issue 3 Pages 643-656  
  Keywords rainfall; growing season; Bydgoszcz region; weather-yield model  
  Abstract The aim of the research was an agro-climatologic assessment of the amount of rainfall on a local scale, mainly aimed to identify trends in their changes and a possible rise in their variability over time. In the studies also we wanted to demonstrate the impact of the amount of rainfall in the region of Bydgoszcz on the yield of some crops. Material for the study consists of rainfall measurements, carried out in a stand- ard way in the years 1981-2010 at the Research Station of the University of Technology and Life Sciences in Bydgoszcz. Station is located in the village of Mochle, located approximately 20 km from the city centre (φ=53013’ N, λ=17051’E, h=98.5 m above sea level) in sparsely urbanized and industrialized area. We also used data of the yield of selected crops (potato, barley, corn for grain, legumes), from the production in the region of Kujawy and Pomorze as well as from our own experimental field. It has been shown that the average long-term rainfall during the growing season allows for classifying Bydgoszcz region as the area with the lowest rainfall in Poland. Analyzed rainfalls were characterized by a very high variability in time, resulting in climatic risk of plant growing. The largest temporal variability related to August. However, there was no extension of the time variability of rainfall totals in the period 1996-2010, as compared to the period 1981-1995. The sole significant growth trend during the period 1981-2010 was found in May. It appeared a tendency to a decline in summer rainfall totals (VI-VIII) in the annual rainfall total, which is consistent with the IPCC projections. Rainfall totals had highly signi cant impact on yields of selected crops. The highest correlation coefficients were found in relations crop-rainfall in the months of increased water needs of plants. Better correlations rainfall-crop were found using data from the production scale as compared with the scale of experimental field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Polish Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4643  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: