|   | 
Details
   web
Records
Author Savary, S.; Jouanin, C.; Félix, I.; Gourdain, E.; Piraux, F.; Brun, F.; Willocquet, L.
Title Assessing plant health in a network of experiments on hardy winter wheat varieties in France: patterns of disease-climate associations Type Journal Article
Year 2016 Publication European Journal of Plant Pathology Abbreviated Journal Eur. J. Plant Pathol.
Volume 146 Issue Pages 741-755
Keywords Puccinia triticina; Puccinia striiformis; Fusarium graminearum; Fusarium culmorum; Fusarium avenaceum; Blumeria graminis; Zymoseptoria tritici; Categorical data; Risk factor; Multiple pathosystem; Correspondence analysis; Logistic regression
Abstract A data set generated by a multi-year (2003–2010) and multi-site network of experiments on winter wheat varieties grown at different levels of crop management is analysed in order to assess the importance of climate on the variability of wheat health. Wheat health is represented by the multiple pathosystem involving five components: leaf rust, yellow rust, fusarium head blight, powdery mildew, and septoria tritici blotch. An overall framework of associations between multiple diseases and climate variables is developed. This framework involves disease levels in a binary form (i.e. epidemic vs. non-epidemic) and synthesis variables accounting for climate over spring and early summer. The multiple disease-climate pattern of associations of this framework conforms to disease-specific knowledge of climate effects on the components of the pathosystem. It also concurs with a (climate-based) risk factor approach to wheat diseases. This report emphasizes the value of large scale data in crop health assessment and the usefulness of a risk factor approach for both tactical and strategic decisions for crop health management.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0929-1873 1573-8469 ISBN Medium
Area CropM Expedition Conference
Notes CropMwp;wos; ftnot_macsur; Approved no
Call Number MA @ admin @ Serial 4755
Permanent link to this record
 

 
Author Stürck, J.; Levers, C.; van der Zanden, E.H.; Schulp, C.J.E.; Verkerk, P.J.; Kuemmerle, T.; Helming, J.; Lotze-Campen, H.; Tabeau, A.; Popp, A.; Schrammeijer, E.; Verburg, P.
Title Simulating and delineating future land change trajectories across Europe Type Journal Article
Year 2015 Publication Regional Environmental Change Abbreviated Journal Reg. Environ. Change
Volume Issue Pages in press
Keywords land use change; land system; modeling; scenario; Europe; ecosystem services
Abstract Explorations of future land use change are important to understand potential conflicts between competing land uses, trade-offs associated with particular land change trajectories, and the effectiveness of policies to steer land systems into desirable states. Most model-based explorations and scenario studies focused on conversions in broad land use classes, but disregarded changes in land management or focused on individual sectors only. Using the European Union (EU) as a case study, we developed an approach to identifying typical combinations of land cover and management changes by combining the results of multimodel simulations in the agriculture and forest sectors for four scenarios from 2000 to 2040. We visualized land change trajectories by mapping regional hotspots of change. Land change trajectories differed in extent and spatial pattern across the EU and among scenarios, indicating trajectory-specific option spaces for alternative land system outcomes. In spite of the large variation in the area of change, similar hotspots of land change were observed among the scenarios. All scenarios indicate a stronger polarization of land use in Europe, with a loss of multifunctional landscapes. We analyzed locations subject to change by comparing location characteristics associated with certain land change trajectories. Results indicate differences in the location conditions of different land change trajectories, with diverging impacts on ecosystem service provisioning. Policy and planning for future land use needs to account for the spatial variation of land change trajectories to achieve both overarching and location-specific targets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1436-3798 ISBN Medium
Area Expedition Conference
Notes TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4996
Permanent link to this record
 

 
Author Ventrella, D.; Charfeddine, M.; Moriondo, M.; Rinaldi, M.; Bindi, M.
Title Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation and nitrogen fertilization Type Journal Article
Year 2012 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change
Volume 12 Issue 3 Pages 407-419
Keywords Modelling; Climate change; Agronomic adaptation strategies; Yield; Tomato; Winter durum wheat; air co2 enrichment; change scenarios; cropping systems; change impacts; simulation; agriculture; variability; increase; model; responses; Environmental Sciences & Ecology
Abstract Agricultural crops are affected by climate change due to the relationship between crop development, growth, yield, CO2 atmospheric concentration and climate conditions. In particular, the further reduction in existing limited water resources combined with an increase in temperature may result in higher impacts on agricultural crops in the Mediterranean area than in other regions. In this study, the cropping system models CERES-Wheat and CROPGRO-Tomato of the Decision Support System for Agrotechnology Transfer (DSSAT) were used to analyse the response of winter durum wheat (Triticum aestivum L.) and tomato (Lycopersicon esculentum Mill.) crops to climate change, irrigation and nitrogen fertilizer managements in one of most productive areas of Italy (i.e. Capitanata, Puglia). For this analysis, three climatic datasets were used: (1) a single dataset (50 km x 50 km) provided by the JRC European centre for the period 1975-2005; two datasets from HadCM3 for the IPCC A2 GHG scenario for time slices with +2A degrees C (centred over 2030-2060) and +5A degrees C (centred over 2070-2099), respectively. All three datasets were used to generate synthetic climate series using a weather simulator (model LARS-WG). Adaptation strategies, such as irrigation and N fertilizer managements, have been investigated to either avoid or at least reduce the negative impacts induced by climate change impacts for both crops. Warmer temperatures were primarily shown to accelerate wheat and tomato phenology, thereby resulting in decreased total dry matter accumulation for both tomato and wheat under the +5A degrees C future climate scenario. Under the +2A degrees C scenario, dry matter accumulation and resulting yield were also reduced for tomato, whereas no negative yield effects were observed for winter durum wheat. In general, limiting the global mean temperature change of 2A degrees C, the application of adaptation strategies (irrigation and nitrogen fertilization) showed a positive effect in minimizing the negative impacts of climate change on productivity of tomato cultivated in southern Italy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1436-3798 1436-378x ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4480
Permanent link to this record
 

 
Author Mansouri, M.; Destain, M.-F.
Title Predicting biomass and grain protein content using Bayesian methods Type Journal Article
Year 2015 Publication Stochastic Environmental Research and Risk Assessment Abbreviated Journal Stoch. Environ. Res. Risk Assess.
Volume 29 Issue 4 Pages 1167-1177
Keywords crop model; particle filter; prediction; ensemble kalman filter; parameter-estimation; particle filters; decision-support; state estimation; model; nitrogen; navigation; tracking; systems
Abstract This paper deals with the problem of predicting biomass and grain protein content using improved particle filtering (IPF) based on minimizing the Kullback-Leibler divergence. The performances of IPF are compared with those of the conventional particle filtering (PF) in two comparative studies. In the first one, we apply IPF and PF at a simple dynamic crop model with the aim to predict a single state variable, namely the winter wheat biomass, and to estimate several model parameters. In the second study, the proposed IPF and the PF are applied to a complex crop model (AZODYN) to predict a winter-wheat quality criterion, namely the grain protein content. The results of both comparative studies reveal that the IPF method provides a better estimation accuracy than the PF method. The benefit of the IPF method lies in its ability to provide accuracy related advantages over the PF method since, unlike the PF which depends on the choice of the sampling distribution used to estimate the posterior distribution, the IPF yields an optimum choice of this sampling distribution, which also utilizes the observed data. The performance of the proposed method is evaluated in terms of estimation accuracy, root mean square error, mean absolute error and execution times.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1436-3240 1436-3259 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4664
Permanent link to this record
 

 
Author Özkan, Ş.; Hill, J.
Title Implementing innovative farm management practices on dairy farms:a review of feeding systems Type Journal Article
Year 2015 Publication Turkish Journal of Veterinary and Animal Sciences Abbreviated Journal Turkish Journal of Veterinary and Animal Sciences
Volume 39 Issue Pages 1-9
Keywords australia; dairy; double-cropping; feeding system; pasture-based; profitability; forage crop systems; south-west victoria; nutritive characteristics; interannual variation; botanical composition; herbage accumulation; growth-rates; pasture; australia; cows
Abstract The Australian dairy industry relies primarily on pasture for its feed supply. However, the variability in rainfall negatively affects plant growth, leading to uncertainty in dryland feed supply, especially during periods of high milk price. New feeding (complementary) systems combining perennial ryegrass with another crop and/or pasture species may have the potential to mitigate this seasonal risk and improve productivity and profitability by providing off-season feed. To date, the majority of research studying the integration of alternative crops into pasture-based systems has focused on substitution and utilization of alternative feed sources. There has been little emphasis on the impacts of integration of forage crops into pasture-based systems. This review focuses on pasture-based feeding systems in southeastern Australia and how transitioning of systems contributes to improved productivity leading to improved profitability for dairy farmers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1300-0128 ISBN Medium Article
Area Expedition Conference
Notes LiveM Approved no
Call Number MA @ admin @ Serial 4577
Permanent link to this record