toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Luo, K.; Tao, F.; Moiwo, J.P.; Xiao, D. doi  openurl
  Title Attribution of hydrological change in Heihe River Basin to climate and land use change in the past three decades Type Journal Article
  Year 2016 Publication Scientific Reports Abbreviated Journal Scientific Reports  
  Volume 6 Issue Pages 33704  
  Keywords water-resources; groundwater recharge; stream-flow; surface-energy; china; runoff; impact; evapotranspiration; cover; availability; Science & Technology – Other Topics  
  Abstract The contributions of climate and land use change (LUCC) to hydrological change in Heihe River Basin (HRB), Northwest China were quantified using detailed climatic, land use and hydrological data, along with the process-based SWAT (Soil and Water Assessment Tool) hydrological model. The results showed that for the 1980s, the changes in the basin hydrological change were due more to LUCC (74.5%) than to climate change (21.3%). While LUCC accounted for 60.7% of the changes in the basin hydrological change in the 1990s, climate change explained 57.3% of that change. For the 2000s, climate change contributed 57.7% to hydrological change in the HRB and LUCC contributed to the remaining 42.0%. Spatially, climate had the largest effect on the hydrology in the upstream region of HRB, contributing 55.8%, 61.0% and 92.7% in the 1980s, 1990s and 2000s, respectively. LUCC had the largest effect on the hydrology in the middle-stream region of HRB, contributing 92.3%, 79.4% and 92.8% in the 1980s, 1990s and 2000s, respectively. Interestingly, the contribution of LUCC to hydrological change in the upstream, middle-stream and downstream regions and the entire HRB declined continually over the past 30 years. This was the complete reverse (a sharp increase) of the contribution of climate change to hydrological change in HRB.  
  Address 2016-10-18  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4668  
Permanent link to this record
 

 
Author Ingram, J.S.I.; Porter, J.R. doi  openurl
  Title Plant science and the food security agenda Type Journal Article
  Year 2015 Publication Nature Plants Abbreviated Journal Nature Plants  
  Volume 1 Issue 11 Pages 15173  
  Keywords africa; maize  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2055-026x 2055-0278 ISBN Medium Editorial Material  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4705  
Permanent link to this record
 

 
Author Porter, J.R.; Wratten, S. doi  openurl
  Title National carbon stocks: Move on to a carbon currency standard Type Journal Article
  Year 2014 Publication Nature Abbreviated Journal Nature  
  Volume 506 Issue Pages 295  
  Keywords  
  Abstract Alongside Robert Costanza and colleagues’ plea to abandon gross domestic product as a measure of national success (see Nature 505, 283–285; 2014), we believe that there is an urgent need to change the way currencies are valued — by using a new ‘carbon standard’ that links economy to ecology. This would work in a similar way to the old gold-exchange standard, except that a country’s currency value would instead be determined by its saved and standing stocks of fossil and non-fossil carbon. Governments would need to decide whether to risk devaluing their currency by depleting carbon stocks — while still honouring a commitment to keep fossil-carbon stocks at 80% as a safeguard against extreme climate change. After the Second World War, huge investments radically altered the economies of the United States, the Soviet Union and the United Kingdom. In the face of climate change, it is now the global energy system that needs reinvention.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4635  
Permanent link to this record
 

 
Author Bertocchi, L.; Vitali, A.; Lacetera, N.; Nardone, A.; Varisco, G.; Bernabucci, U. doi  openurl
  Title Seasonal variations in the composition of Holstein cow’s milk and temperature-humidity index relationship Type Journal Article
  Year 2014 Publication Animal Abbreviated Journal Animal  
  Volume 8 Issue 4 Pages 667-674  
  Keywords Animal Husbandry/*methods; Animals; Cattle/*physiology; Cell Count/veterinary; Dairying; Female; Hot Temperature; Humidity; Italy; Lactation/*physiology; Milk/cytology/*physiology; Retrospective Studies; Seasons  
  Abstract A retrospective study on seasonal variations in the characteristics of cow’s milk and temperature-humidity index (THI) relationship was conducted on bulk milk data collected from 2003 to 2009. The THI relationship study was carried out on 508 613 bulk milk data items recorded in 3328 dairy farms form the Lombardy region, Italy. Temperature and relative humidity data from 40 weather stations were used to calculate THI. Milk characteristics data referred to somatic cell count (SCC), total bacterial count (TBC), fat percentage (FA%) and protein percentage (PR%). Annual, seasonal and monthly variations in milk composition were evaluated on 656 064 data items recorded in 3727 dairy farms. The model highlighted a significant association between the year, season and month, and the parameters analysed (SCC, TBC, FA%, PR%). The summer season emerged as the most critical season. Of the summer months, July presented the most critical conditions for TBC, FA% and PR%, (52 054 ± 183 655, 3.73% ± 0.35% and 3.30% ± 0.15%, respectively), and August presented higher values of SCC (369 503 ± 228 377). Each milk record was linked to THI data calculated at the nearest weather station. The analysis demonstrated a positive correlation between THI and SCC and TBC, and indicated a significant change in the slope at 57.3 and 72.8 maximum THI, respectively. The model demonstrated a negative correlation between THI and FA% and PR% and provided breakpoints in the pattern at 50.2 and 65.2 maximum THI, respectively. The results of this study indicate the presence of critical climatic thresholds for bulk tank milk composition in dairy cows. Such indications could facilitate the adoption of heat management strategies, which may ensure the health and production of dairy cows and limit related economic losses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-7311 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4618  
Permanent link to this record
 

 
Author Del Prado, A.; Crosson, P.; Olesen, J.E.; Rotz, C.A. doi  openurl
  Title Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems Type Journal Article
  Year 2013 Publication Animal Abbreviated Journal Animal  
  Volume 7 Suppl 2 Issue Pages 373-385  
  Keywords  
  Abstract The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed to quantify GHG emissions and explore climate change mitigation strategies for livestock systems. This paper analyses the limitations and strengths of the different existing approaches for modelling GHG mitigation by considering basic model structures, approaches for simulating GHG emissions from various farm components and the sensitivity of GHG outputs and mitigation measures to different approaches. Potential challenges for linking existing models with the simulation of impacts and adaptation measures under climate change are explored along with a brief discussion of the effects on other ecosystem services.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-7311 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 4765  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: