toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Salo, T.J.; Palosuo, T.; Kersebaum, K.C.; Nendel, C.; Angulo, C.; Ewert, F.; Bindi, M.; Calanca, P.; Klein, T.; Moriondo, M.; Ferrise, R.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Takáč, J.; Hlavinka, P.; Trnka, M.; Rötter, R.P. url  doi
openurl 
  Title Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization Type Journal Article
  Year 2016 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.  
  Volume 154 Issue 7 Pages 1218-1240  
  Keywords northern growing conditions; climate-change impacts; spring barley; systems simulation; farming systems; soil properties; winter-wheat; dynamics; growth; management  
  Abstract Eleven widely used crop simulation models (APSIM, CERES, CROPSYST, COUP, DAISY, EPIC, FASSET, HERMES, MONICA, STICS and WOFOST) were tested using spring barley (Hordeum vulgare L.) data set under varying nitrogen (N) fertilizer rates from three experimental years in the boreal climate of Jokioinen, Finland. This is the largest standardized crop model inter-comparison under different levels of N supply to date. The models were calibrated using data from 2002 and 2008, of which 2008 included six N rates ranging from 0 to 150 kg N/ha. Calibration data consisted of weather, soil, phenology, leaf area index (LAI) and yield observations. The models were then tested against new data for 2009 and their performance was assessed and compared with both the two calibration years and the test year. For the calibration period, root mean square error between measurements and simulated grain dry matter yields ranged from 170 to 870 kg/ha. During the test year 2009, most models failed to accurately reproduce the observed low yield without N fertilizer as well as the steep yield response to N applications. The multi-model predictions were closer to observations than most single-model predictions, but multi-model mean could not correct systematic errors in model simulations. Variation in soil N mineralization and LAI development due to differences in weather not captured by the models most likely was the main reason for their unsatisfactory performance. This suggests the need for model improvement in soil N mineralization as a function of soil temperature and moisture. Furthermore, specific weather event impacts such as low temperatures after emergence in 2009, tending to enhance tillering, and a high precipitation event just before harvest in 2008, causing possible yield penalties, were not captured by any of the models compared in the current study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 1469-5146 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4713  
Permanent link to this record
 

 
Author Shrestha, S.; Abdalla, M.; Hennessy, T.; Forristal, D.; Jones, M.B. url  doi
openurl 
  Title Irish farms under climate change – is there a regional variation on farm responses? Type Journal Article
  Year 2015 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.  
  Volume 153 Issue 03 Pages 385-398  
  Keywords change impacts; elevated co2; potential impacts; maize production; united-states; winter-wheat; plant-growth; adaptation; ireland; yield  
  Abstract The current paper aims to determine regional impacts of climate change on Irish farms examining the variation in farm responses. A set of crop growth models were used to determine crop and grass yields under a baseline scenario and a future climate scenario. These crop and grass yields were used along with farm-level data taken from the Irish National Farm Survey in an optimizing farm-level (farm-level linear programming) model, which maximizes farm profits under limiting resources. A change in farm net margins under the climate change scenario compared to the baseline scenario was taken as a measure to determine the effect of climate change on farms. The growth models suggested a decrease in cereal crop yields (up to 9%) but substantial increase in yields of forage maize (up to 97%) and grass (up to 56%) in all regions. Farms in the border, midlands and south-east regions suffered, whereas farms in all other regions generally fared better under the climate change scenario used in the current study. The results suggest that there is a regional variability between farms in their responses to the climate change scenario. Although substituting concentrate feed with grass feeds is the main adaptation on all livestock farms, the extent of such substitution differs between farms in different regions. For example, large dairy farms in the south-east region adopted total substitution of concentrate feed while similar dairy farms in the south-west region opted to replace only 0.30 of concentrate feed. Farms in most of the regions benefitted from increasing stocking rate, except for sheep farms in the border and dairy farms in the south-east regions. The tillage farms in the mid-east region responded to the climate change scenario by shifting arable production to beef production on farms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 1469-5146 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4542  
Permanent link to this record
 

 
Author Pirttioja, N.; Carter, T.R.; Fronzek, S.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.F.; Dumont, B.; Ewert, F.; Ferrise, R.; François, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.C.; Kollas, C.; Krzyszczak, J.; Lorite, I.J.; Minet, J.; Minguez, M.I.; Montesino-San Martin, M.; Moriondo, M.; Müller, C.; Nendel, C.; Öztürk, I.; Perego, A.; Rodríguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rötter, R.P. url  doi
openurl 
  Title Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 87-105  
  Keywords climate; crop model; impact response surface; IRS; sensitivity analysis; wheat; yield; climate-change impacts; uncertainty; 21st-century; projections; simulation; growth; region  
  Abstract This study explored the utility of the impact response surface (IRS) approach for investigating model ensemble crop yield responses under a large range of changes in climate. IRSs of spring and winter wheat Triticum aestivum yields were constructed from a 26-member ensemble of process-based crop simulation models for sites in Finland, Germany and Spain across a latitudinal transect. The sensitivity of modelled yield to systematic increments of changes in temperature (-2 to +9°C) and precipitation (-50 to +50%) was tested by modifying values of baseline (1981 to 2010) daily weather, with CO2 concentration fixed at 360 ppm. The IRS approach offers an effective method of portraying model behaviour under changing climate as well as advantages for analysing, comparing and presenting results from multi-model ensemble simulations. Though individual model behaviour occasionally departed markedly from the average, ensemble median responses across sites and crop varieties indicated that yields decline with higher temperatures and decreased precipitation and increase with higher precipitation. Across the uncertainty ranges defined for the IRSs, yields were more sensitive to temperature than precipitation changes at the Finnish site while sensitivities were mixed at the German and Spanish sites. Precipitation effects diminished under higher temperature changes. While the bivariate and multi-model characteristics of the analysis impose some limits to interpretation, the IRS approach nonetheless provides additional insights into sensitivities to inter-model and inter-annual variability. Taken together, these sensitivities may help to pinpoint processes such as heat stress, vernalisation or drought effects requiring refinement in future model development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x 1616-1572 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4662  
Permanent link to this record
 

 
Author Persson, T.; Kværnø, S.; Höglind, M. url  doi
openurl 
  Title Impact of soil type extrapolation on timothy grass yield under baseline and future climate conditions in southeastern Norway Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 71-86  
  Keywords climate change scenarios; crop modelling; forage grass; lingra; soil properties; spatial variability; phleum pretense; poaceae; simulation-model; nutritive-value; systems simulation; catimo model; crop models; growth; nitrogen; scale; productivity; regrowth  
  Abstract Interactions between soil properties and climate affect forage grass productivity. Dynamic models, simulating crop performance as a function of environmental conditions, are valid for a specific location with given soil and weather conditions. Extrapolations of local soil properties to larger regions can help assess the requirement for soil input in regional yield estimations. Using the LINGRA model, we simulated the regional yield level and variability of timothy, a forage grass, in Akershus and Ostfold counties, Norway. Soils were grouped according to physical similarities according to 4 sets of criteria. This resulted in 66, 15, 5 and 1 groups of soils. The properties of the soil with the largest area was extrapolated to the other soils within each group and input to the simulations. All analyses were conducted for 100 yr of generated weather representing the period 1961-1990, and climate projections for the period 2046-2065, the Intergovernmental Panel on Climate Change greenhouse gas emission scenario A1B, and 4 global climate models. The simulated regional seasonal timothy yields were 5-13% lower on average and had higher inter-annual variability for the least detailed soil extrapolation than for the other soil extrapolations, across climates. There were up to 20% spatial intra-regional differences in simulated yield between soil extrapolations. The results indicate that, for conditions similar to these studied here, a few representative profiles are sufficient for simulations of average regional seasonal timothy yield. More spatially detailed yield analyses would benefit from more detailed soil input.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x 1616-1572 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4674  
Permanent link to this record
 

 
Author Mitter, H.; Schmid, E.; Sinabell, F. url  doi
openurl 
  Title Integrated modelling of protein crop production responses to climate change and agricultural policy scenarios in Austria Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 205-220  
  Keywords Climate change impact; Adaptation; Soybean; EPIC; Common Agricultural Policy; Land use  
  Abstract Climate and policy changes are likely to affect protein crop production and thus trade balances in Europe, which is highly dependent on imports. Exemplified for Austrian cropland, we developed an integrated modelling framework to analyze climate change and policy scenario impacts on protein crop production and environmental outcomes. The integrated modelling framework consists of a statistical climate change model, a crop rotation model, the bio-physical process model EPIC, and the economic bottom-up land use optimization model BiomAT. EPIC is applied to simulate annual dry matter crop yields for different crop management practices including crop rotations, fertilization intensities, and irrigation, as well as for 3 regional climate change scenarios until 2040 at a 1 km grid resolution. BiomAT maximizes total gross margins by optimizing land use choices and crop management practices subject to spatially explicit cropland endowments. The model results indicate that changes in agricultural policy conditions, cropland use, and higher flexibility in crop management practices may reduce protein import dependence under changing climatic conditions. Expanding protein crop production is most attractive in south-eastern Austria with its Central European continental climate where maize is most often replaced in crop rotations. However, the acreage of protein crops is limited by agronomically suitable cropland. An intended side effect is the reduction of nitrogen fertilizer inputs by about 0.1% if total protein crop production increases by 1%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5012  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: